Spaces:
Sleeping
Sleeping
File size: 7,088 Bytes
0925cf1 3871549 a58c598 e14fae9 c63d488 1aa42ec 5bde01d 0925cf1 1aa42ec e14fae9 1aa42ec fd34bb6 1aa42ec e14fae9 1aa42ec c3967c0 e14fae9 3871549 c3967c0 3871549 c3967c0 3871549 c3967c0 0adcbb8 c3967c0 3871549 c3967c0 3871549 1aa42ec e14fae9 c92c1fc 1aa42ec 05c550f e14fae9 1aa42ec 05c550f 3871549 e14fae9 c92c1fc e14fae9 0925cf1 5bde01d c6747cf e66a721 1aa42ec e66a721 c6747cf 874cb7c 65dc494 c6747cf 3871549 1aa42ec e14fae9 8f724dc c8f91a3 8f724dc db07984 dfe65d8 e66a721 c28f29b 3871549 edf126d 92ec9db 563066a a031477 1aa42ec e14fae9 1aa42ec e14fae9 1aa42ec 3871549 1aa42ec e14fae9 1aa42ec e14fae9 3871549 82d2444 761d42b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import torch
from tqdm import tqdm
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline
import gradio as gr
import requests
import spaces
models_list = []
loras_list = ["None"]
models = {}
def download_file(url, filename, progress=gr.Progress(track_tqdm=True)):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(filename, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
print("ERROR, something went wrong")
def get_civitai_model_info(model_id):
url = f"https://civitai.com/api/v1/models/{model_id}"
response = requests.get(url)
if response.status_code != 200:
return None
return response.json()
def find_download_url(data, file_extension):
for file in data.get('modelVersions', [{}])[0].get('files', []):
if file['name'].endswith(file_extension):
return file['downloadUrl']
return None
def download_civitai_model(model_id, lora_id=""):
try:
model_data = get_civitai_model_info(model_id)
if model_data is None:
return f"Error: Model with ID {model_id} not found."
model_name = model_data['name']
model_ckpt_url = find_download_url(model_data, '.ckpt')
model_safetensors_url = find_download_url(model_data, '.safetensors')
model_url = model_ckpt_url or model_safetensors_url
if not model_url:
return f"Error: No suitable file found for model {model_name}."
file_extension = '.ckpt' if model_ckpt_url else '.safetensors'
download_file(model_url, f"{model_name}{file_extension}")
if lora_id:
lora_data = get_civitai_model_info(lora_id)
if lora_data is None:
return f"Error: LoRA with ID {lora_id} not found."
lora_name = lora_data['name']
lora_safetensors_url = find_download_url(lora_data, '.safetensors')
if not lora_safetensors_url:
return f"Error: No suitable file found for LoRA {lora_name}."
download_file(lora_safetensors_url, f"{lora_name}.safetensors")
loras_list.append(lora_name)
else:
lora_name = "None"
models_list.append(model_name)
return "Model/LoRA Downloaded!"
except Exception as e:
return f"Error downloading model or LoRA: {e}"
def load_model(model, lora="", use_lora=False):
try:
print(f"\n\nLoading {model}...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipeline = StableDiffusionXLPipeline.from_pretrained(
model,
vae=vae,
torch_dtype=torch.float16,
)
if use_lora and lora != "":
pipeline.load_lora_weights(lora)
pipeline.to("cuda")
models[model] = pipeline
return "Model/LoRA loaded successfully!"
except Exception as e:
return f"Error loading model {model}: {e}"
@spaces.GPU
def generate_images(
model_name,
lora_name,
prompt,
negative_prompt,
num_inference_steps,
guidance_scale,
height,
width,
num_images=4,
progress=gr.Progress(track_tqdm=True)
):
if prompt is not None and prompt.strip() != "":
if lora_name == "None":
load_model(model_name, "", False)
elif lora_name in loras_list and lora_name != "None":
load_model(model_name, lora_name, True)
pipe = models.get(model_name)
if pipe is None:
return []
outputs = []
for _ in range(num_images):
output = pipe(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width
)["images"][0]
outputs.append(output)
return outputs
else:
return gr.Warning("Prompt empty!")
# Create the Gradio blocks
with gr.Blocks(theme='ParityError/Interstellar') as demo:
with gr.Row(equal_height=False):
with gr.Tab("Generate"):
with gr.Column(elem_id="input_column"):
with gr.Group(elem_id="input_group"):
model_dropdown = gr.Dropdown(choices=models_list, value=models_list[0] if models_list else None, label="Model", elem_id="model_dropdown")
lora_dropdown = gr.Dropdown(choices=loras_list, value=loras_list[0], label="LoRA")
prompt = gr.Textbox(label="Prompt", elem_id="prompt_textbox")
generate_btn = gr.Button("Generate Image", elem_id="generate_button")
with gr.Accordion("Advanced", open=False, elem_id="advanced_accordion"):
negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", elem_id="negative_prompt_textbox")
num_inference_steps = gr.Slider(minimum=10, maximum=50, step=1, value=25, label="Number of Inference Steps", elem_id="num_inference_steps_slider")
guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.5, value=7.5, label="Guidance Scale", elem_id="guidance_scale_slider")
height = gr.Slider(minimum=1024, maximum=2048, step=256, value=1024, label="Height", elem_id="height_slider")
width = gr.Slider(minimum=1024, maximum=2048, step=256, value=1024, label="Width", elem_id="width_slider")
num_images = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images", elem_id="num_images_slider")
with gr.Column(elem_id="output_column"):
output_gallery = gr.Gallery(label="Generated Images", height=480, scale=1, elem_id="output_gallery")
generate_btn.click(generate_images, inputs=[model_dropdown, lora_dropdown, prompt, negative_prompt, num_inference_steps, guidance_scale, height, width, num_images], outputs=output_gallery)
with gr.Tab("Download Custom Model"):
with gr.Group():
model_id = gr.Textbox(label="CivitAI Model ID")
lora_id = gr.Textbox(label="CivitAI LoRA ID (Optional)")
download_button = gr.Button("Download Model")
download_output = gr.Textbox(label="Download Output")
download_button.click(download_civitai_model, inputs=[model_id, lora_id], outputs=download_output)
demo.launch() |