Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import os | |
import requests | |
import spaces | |
import torch | |
import torchvision.transforms as T | |
import types | |
import albumentations as A | |
import torch.nn.functional as F | |
from PIL import Image | |
from tqdm import tqdm | |
cmap = plt.get_cmap("tab20") | |
imagenet_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) | |
def get_bg_mask(image): | |
# detect background based on the four edges | |
image = np.array(image) | |
if np.all(image[:, 0] == image[0, 0]) and np.all(image[:, -1] == image[0, -1]) \ | |
and np.all(image[0, :] == image[0, 0]) and np.all(image[-1, :] == image[-1, 0]) \ | |
and np.all(image[0, 0] == image[0, -1]) and np.all(image[0, 0] == image[-1, 0]) \ | |
and np.all(image[0, 0] == image[-1, -1]): | |
return np.any(image != image[0, 0], -1) | |
return np.ones_like(image[:, :, 0], dtype=bool) | |
def download_image(url, save_path): | |
response = requests.get(url) | |
with open(save_path, 'wb') as file: | |
file.write(response.content) | |
def process_image(image, res, patch_size, decimation=4): | |
image = torch.from_numpy(np.array(image) / 255.).float().permute(2, 0, 1).to(device) | |
tgt_size = (int(image.shape[-2] * res / image.shape[-1]), res) | |
if image.shape[-2] > image.shape[-1]: | |
tgt_size = (res, int(image.shape[-1] * res / image.shape[-2])) | |
patch_h, patch_w = tgt_size[0] // decimation, tgt_size[1] // decimation | |
image_resized = T.functional.resize(image, (patch_h * patch_size, patch_w * patch_size)) | |
image_resized = imagenet_transform(image_resized) | |
return image_resized | |
def generate_grid(x, y, stride): | |
x_coords = np.arange(0, x, grid_stride) | |
y_coords = np.arange(0, y, grid_stride) | |
x_mesh, y_mesh = np.meshgrid(x_coords, y_coords) | |
kp = np.column_stack((x_mesh.ravel(), y_mesh.ravel())).astype(float) | |
return kp | |
def pca(feat, pca_dim=3): | |
feat_flattened = feat | |
mean = torch.mean(feat_flattened, dim=0) | |
centered_features = feat_flattened - mean | |
U, S, V = torch.pca_lowrank(centered_features, q=pca_dim) | |
reduced_features = torch.matmul(centered_features, V[:, :pca_dim]) | |
return reduced_features | |
def co_pca(feat1, feat2, pca_dim=3): | |
co_feats = torch.cat((feat1.reshape(-1, feat1.shape[-1]), feat2.reshape(-1, feat2.shape[-1])), dim=0) | |
feats = pca(co_feats) | |
feat1_pca = feats[:feat1.shape[0]*feat1.shape[1]].reshape(feat1.shape[0], feat1.shape[1], -1) | |
feat2_pca = feats[feat1.shape[0]*feat1.shape[1]:].reshape(feat2.shape[0], feat2.shape[1], -1) | |
return feat1_pca, feat2_pca | |
def draw_correspondence(feat1, feat2, color1, mask1, mask2): | |
original_mask2_shape = mask2.shape | |
mask1, mask2 = mask1.reshape(-1), mask2.reshape(-1) | |
distances = torch.cdist(feat1.reshape(-1, feat1.shape[-1])[mask1], feat2.reshape(-1, feat2.shape[-1])[mask2]) | |
nearest = torch.argmin(distances, dim=0) | |
color2 = torch.zeros((mask2.shape[0], 3,)).to(device) | |
color2[mask2] = color1.reshape(-1, 3)[mask1][nearest] | |
color2 = color2.reshape(*original_mask2_shape, 3) | |
return color2 | |
def load_model(options): | |
original_models = {} | |
fine_models = {} | |
for option in tqdm(options): | |
print('Please wait ...') | |
print('loading weights of ', option) | |
fine_models[option] = torch.hub.load(".", model_card[option], source='local').to(device) | |
original_models[option] = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=fine_models[option].backbone_name).eval().to(device) | |
print('Done! Now play the demo :)') | |
return original_models, fine_models | |
if __name__ == "__main__": | |
if torch.cuda.is_available(): | |
device = torch.device('cuda') | |
else: | |
device = torch.device('cpu') | |
print("device: ") | |
print(device) | |
example_dir = "examples" | |
os.makedirs(example_dir, exist_ok=True) | |
image_input1 = gr.Image(label="Choose an image:", | |
height=500, | |
type="pil", | |
image_mode='RGB', | |
sources=['upload', 'webcam', 'clipboard'] | |
) | |
image_input2 = gr.Image(label="Choose another image:", | |
height=500, | |
type="pil", | |
image_mode='RGB', | |
sources=['upload', 'webcam', 'clipboard'] | |
) | |
options = ['DINOv2-Base'] | |
model_option = gr.Radio(options, value="DINOv2-Base", label='Choose a 2D foundation model') | |
model_card = { | |
"DINOv2-Base": "dinov2_base", | |
} | |
os.environ['TORCH_HOME'] = '/tmp/.cache' | |
# os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache' | |
# Pre-load all models | |
original_models, fine_models = load_model(options) | |
def main(image1, image2, model_option, kmeans_num): | |
if image1 is None or image2 is None: | |
return None | |
# Select model | |
original_model = original_models[model_option] | |
fine_model = fine_models[model_option] | |
images_resized = [process_image(image, 640, 14, decimation=8) for image in [image1, image2]] | |
masks = [torch.from_numpy(get_bg_mask(image)).to(device) for image in [image1, image2]] | |
feat_shapes = [(images_resized[0].shape[-2] // 14, images_resized[0].shape[-1] // 14), | |
(images_resized[1].shape[-2] // 14, images_resized[1].shape[-1] // 14)] | |
masks_resized = [T.functional.resize(mask.float()[None], feat_shape, | |
interpolation=T.functional.InterpolationMode.NEAREST_EXACT)[0] | |
for mask, feat_shape in zip(masks, feat_shapes)] | |
with torch.no_grad(): | |
original_feats = [original_model.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1) | |
for image, feat_shape in zip(images_resized, feat_shapes)] | |
original_feats = [F.normalize(feat, p=2, dim=-1) for feat in original_feats] | |
original_color1 = torch.zeros((original_feats[0].shape[0] * original_feats[0].shape[1], 3,)).to(device) | |
color = pca((original_feats[0][masks_resized[0] > 0]), 3) | |
color = (color - color.min()) / (color.max() - color.min()) | |
original_color1[masks_resized[0].reshape(-1) > 0] = color | |
original_color1 = original_color1.reshape(*original_feats[0].shape[:2], 3) | |
original_color2 = draw_correspondence(original_feats[0], original_feats[1], original_color1, | |
masks_resized[0] > 0, masks_resized[1] > 0) | |
fine_feats = [fine_model.dinov2.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1) | |
for image, feat_shape in zip(images_resized, feat_shapes)] | |
fine_feats = [fine_model.refine_conv(feat[None].permute(0, 3, 1, 2)).permute(0, 2, 3, 1)[0] for feat in fine_feats] | |
fine_feats = [F.normalize(feat, p=2, dim=-1) for feat in fine_feats] | |
fine_color2 = draw_correspondence(fine_feats[0], fine_feats[1], original_color1, | |
masks_resized[0] > 0, masks_resized[1] > 0) | |
fig, ax = plt.subplots(2, 2, squeeze=False) | |
ax[0][0].imshow(original_color1.cpu().numpy()) | |
ax[0][1].text(-0.1, 0.5, "Original " + model_option, fontsize=7, rotation=90, va='center', transform=ax[0][1].transAxes) | |
ax[0][1].imshow(original_color2.cpu().numpy()) | |
# ax[1][0].imshow(fine_color1.cpu().numpy()) | |
ax[1][1].text(-0.1, 0.5, "Finetuned " + model_option, fontsize=7, rotation=90, va='center', transform=ax[1][1].transAxes) | |
ax[1][1].imshow(fine_color2.cpu().numpy()) | |
for xx in ax: | |
for x in xx: | |
x.xaxis.set_major_formatter(plt.NullFormatter()) | |
x.yaxis.set_major_formatter(plt.NullFormatter()) | |
x.set_xticks([]) | |
x.set_yticks([]) | |
x.axis('off') | |
plt.tight_layout() | |
plt.close(fig) | |
return fig | |
demo = gr.Interface( | |
title="<center> \ | |
<h1>3DCorrEnhance</h1> \ | |
<h2>Multiview Equivariance Improves 3D Correspondence Understanding with Minimal Feature Finetuning</h2> \ | |
<h2>ICLR 2025</h2> \ | |
</center>", | |
description="", | |
fn=main, | |
inputs=[image_input1, image_input2, model_option], | |
outputs="plot", | |
examples=[ | |
["examples/objs/1-1.png", "examples/objs/1-2.png", "DINOv2-Base"], | |
["examples/scenes/1-1.jpg", "examples/scenes/1-2.jpg", "DINOv2-Base"], | |
["examples/scenes/2-1.jpg", "examples/scenes/2-2.jpg", "DINOv2-Base"], | |
], | |
cache_examples=True) | |
demo.launch() | |