File size: 8,987 Bytes
eb2eeeb
d8eb09b
 
 
 
 
 
 
 
 
 
eb2eeeb
d8eb09b
 
eb2eeeb
d8eb09b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8716ec0
d8eb09b
 
 
8716ec0
133da90
d8eb09b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import requests
import spaces
import torch
import torchvision.transforms as T
import types
import albumentations as A
import torch.nn.functional as F

from PIL import Image
from tqdm import tqdm

cmap = plt.get_cmap("tab20")
imagenet_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))

def get_bg_mask(image):
    # detect background based on the four edges
    image = np.array(image)
    if np.all(image[:, 0] == image[0, 0]) and np.all(image[:, -1] == image[0, -1]) \
            and np.all(image[0, :] == image[0, 0]) and np.all(image[-1, :] == image[-1, 0]) \
            and np.all(image[0, 0] == image[0, -1]) and np.all(image[0, 0] == image[-1, 0]) \
            and np.all(image[0, 0] == image[-1, -1]):
        return np.any(image != image[0, 0], -1)
    return np.ones_like(image[:, :, 0], dtype=bool)

    
def download_image(url, save_path):
    response = requests.get(url)
    with open(save_path, 'wb') as file:
        file.write(response.content)


def process_image(image, res, patch_size, decimation=4):
    image = torch.from_numpy(np.array(image) / 255.).float().permute(2, 0, 1).to(device)

    tgt_size = (int(image.shape[-2] * res / image.shape[-1]), res)
    if image.shape[-2] > image.shape[-1]:
        tgt_size = (res, int(image.shape[-1] * res / image.shape[-2]))
    
    patch_h, patch_w = tgt_size[0] // decimation, tgt_size[1] // decimation
    image_resized = T.functional.resize(image, (patch_h * patch_size, patch_w * patch_size))
    
    image_resized = imagenet_transform(image_resized)

    return image_resized

def generate_grid(x, y, stride):
    x_coords = np.arange(0, x, grid_stride)
    y_coords = np.arange(0, y, grid_stride)

    x_mesh, y_mesh = np.meshgrid(x_coords, y_coords)
    kp = np.column_stack((x_mesh.ravel(), y_mesh.ravel())).astype(float)
    return kp

def pca(feat, pca_dim=3):
    feat_flattened = feat
    mean = torch.mean(feat_flattened, dim=0)
    centered_features = feat_flattened - mean
    U, S, V = torch.pca_lowrank(centered_features, q=pca_dim)
    reduced_features = torch.matmul(centered_features, V[:, :pca_dim])
    return reduced_features
    
def co_pca(feat1, feat2, pca_dim=3):
    co_feats = torch.cat((feat1.reshape(-1, feat1.shape[-1]), feat2.reshape(-1, feat2.shape[-1])), dim=0)
    feats = pca(co_feats)
    feat1_pca = feats[:feat1.shape[0]*feat1.shape[1]].reshape(feat1.shape[0], feat1.shape[1], -1)
    feat2_pca = feats[feat1.shape[0]*feat1.shape[1]:].reshape(feat2.shape[0], feat2.shape[1], -1)
    return feat1_pca, feat2_pca
    
    
def draw_correspondence(feat1, feat2, color1, mask1, mask2):
    original_mask2_shape = mask2.shape
    mask1, mask2 = mask1.reshape(-1), mask2.reshape(-1)
    distances = torch.cdist(feat1.reshape(-1, feat1.shape[-1])[mask1], feat2.reshape(-1, feat2.shape[-1])[mask2])
    nearest = torch.argmin(distances, dim=0)
    color2 = torch.zeros((mask2.shape[0], 3,)).to(device)
    color2[mask2] = color1.reshape(-1, 3)[mask1][nearest]
    color2 = color2.reshape(*original_mask2_shape, 3)
    return color2
    
def load_model(options):
    original_models = {}
    fine_models = {}
    for option in tqdm(options):
        print('Please wait ...')
        print('loading weights of ', option)
        fine_models[option] = torch.hub.load(".", model_card[option], source='local').to(device)
        original_models[option] = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=fine_models[option].backbone_name).eval().to(device)
    print('Done! Now play the demo :)')
    return original_models, fine_models
        
if __name__ == "__main__":

    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    print("device: ")
    print(device)

    example_dir = "examples"

    os.makedirs(example_dir, exist_ok=True)
        
    image_input1 = gr.Image(label="Choose an image:",
                           height=500,
                           type="pil",
                           image_mode='RGB',
                           sources=['upload', 'webcam', 'clipboard']
                           )
    image_input2 = gr.Image(label="Choose another image:",
                            height=500,
                            type="pil",
                            image_mode='RGB',
                            sources=['upload', 'webcam', 'clipboard']
                            )

    options = ['DINOv2-Base']
    model_option = gr.Radio(options, value="DINOv2-Base", label='Choose a 2D foundation model')
    
    model_card = {
        "DINOv2-Base": "dinov2_base",
    }


    os.environ['TORCH_HOME'] = '/tmp/.cache'
    # os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'

    # Pre-load all models
    original_models, fine_models = load_model(options)

    @spaces.GPU
    def main(image1, image2, model_option, kmeans_num):
        if image1 is None or image2 is None:
            return None
        # Select model
        original_model = original_models[model_option]
        fine_model = fine_models[model_option]
        
        images_resized = [process_image(image, 640, 14, decimation=8) for image in [image1, image2]]
        masks = [torch.from_numpy(get_bg_mask(image)).to(device) for image in [image1, image2]]
        feat_shapes = [(images_resized[0].shape[-2] // 14, images_resized[0].shape[-1] // 14),
                       (images_resized[1].shape[-2] // 14, images_resized[1].shape[-1] // 14)]

        masks_resized = [T.functional.resize(mask.float()[None], feat_shape,
                                            interpolation=T.functional.InterpolationMode.NEAREST_EXACT)[0]
                         for mask, feat_shape in zip(masks, feat_shapes)]
        
        with torch.no_grad():
            original_feats = [original_model.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1)
                              for image, feat_shape in zip(images_resized, feat_shapes)]
            original_feats = [F.normalize(feat, p=2, dim=-1) for feat in original_feats]
            
            original_color1 = torch.zeros((original_feats[0].shape[0] * original_feats[0].shape[1], 3,)).to(device)
            color = pca((original_feats[0][masks_resized[0] > 0]), 3)
            color = (color - color.min()) / (color.max() - color.min())
            original_color1[masks_resized[0].reshape(-1) > 0] = color
            original_color1 = original_color1.reshape(*original_feats[0].shape[:2], 3)
            
            original_color2 = draw_correspondence(original_feats[0], original_feats[1], original_color1, 
                                                  masks_resized[0] > 0, masks_resized[1] > 0)
            
            fine_feats = [fine_model.dinov2.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1)
                              for image, feat_shape in zip(images_resized, feat_shapes)]
            fine_feats = [fine_model.refine_conv(feat[None].permute(0, 3, 1, 2)).permute(0, 2, 3, 1)[0] for feat in fine_feats]
            fine_feats = [F.normalize(feat, p=2, dim=-1) for feat in fine_feats]
            fine_color2 = draw_correspondence(fine_feats[0], fine_feats[1], original_color1, 
                                              masks_resized[0] > 0, masks_resized[1] > 0)

        fig, ax = plt.subplots(2, 2, squeeze=False)
        ax[0][0].imshow(original_color1.cpu().numpy())
        ax[0][1].text(-0.1, 0.5, "Original " + model_option, fontsize=7, rotation=90, va='center', transform=ax[0][1].transAxes)
        ax[0][1].imshow(original_color2.cpu().numpy())
        
        # ax[1][0].imshow(fine_color1.cpu().numpy())
        ax[1][1].text(-0.1, 0.5, "Finetuned " + model_option, fontsize=7, rotation=90, va='center', transform=ax[1][1].transAxes)
        ax[1][1].imshow(fine_color2.cpu().numpy())
        for xx in ax:
            for x in xx:
                x.xaxis.set_major_formatter(plt.NullFormatter())
                x.yaxis.set_major_formatter(plt.NullFormatter())
                x.set_xticks([])
                x.set_yticks([])
                x.axis('off')

        plt.tight_layout()
        plt.close(fig)
        return fig

    
    demo = gr.Interface(
        title="<center>  \
        <h1>3DCorrEnhance</h1> \
        <h2>Multiview Equivariance Improves 3D Correspondence Understanding with Minimal Feature Finetuning</h2> \
        <h2>ICLR 2025</h2> \
        </center>",
        description="",
        fn=main, 
        inputs=[image_input1, image_input2, model_option],
        outputs="plot",
        examples=[
            ["examples/objs/1-1.png", "examples/objs/1-2.png", "DINOv2-Base"],
            ["examples/scenes/1-1.jpg", "examples/scenes/1-2.jpg", "DINOv2-Base"],
            ["examples/scenes/2-1.jpg", "examples/scenes/2-2.jpg", "DINOv2-Base"],
            ],
        cache_examples=True)
    demo.launch()