Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,987 Bytes
eb2eeeb d8eb09b eb2eeeb d8eb09b eb2eeeb d8eb09b 8716ec0 d8eb09b 8716ec0 133da90 d8eb09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import requests
import spaces
import torch
import torchvision.transforms as T
import types
import albumentations as A
import torch.nn.functional as F
from PIL import Image
from tqdm import tqdm
cmap = plt.get_cmap("tab20")
imagenet_transform = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
def get_bg_mask(image):
# detect background based on the four edges
image = np.array(image)
if np.all(image[:, 0] == image[0, 0]) and np.all(image[:, -1] == image[0, -1]) \
and np.all(image[0, :] == image[0, 0]) and np.all(image[-1, :] == image[-1, 0]) \
and np.all(image[0, 0] == image[0, -1]) and np.all(image[0, 0] == image[-1, 0]) \
and np.all(image[0, 0] == image[-1, -1]):
return np.any(image != image[0, 0], -1)
return np.ones_like(image[:, :, 0], dtype=bool)
def download_image(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as file:
file.write(response.content)
def process_image(image, res, patch_size, decimation=4):
image = torch.from_numpy(np.array(image) / 255.).float().permute(2, 0, 1).to(device)
tgt_size = (int(image.shape[-2] * res / image.shape[-1]), res)
if image.shape[-2] > image.shape[-1]:
tgt_size = (res, int(image.shape[-1] * res / image.shape[-2]))
patch_h, patch_w = tgt_size[0] // decimation, tgt_size[1] // decimation
image_resized = T.functional.resize(image, (patch_h * patch_size, patch_w * patch_size))
image_resized = imagenet_transform(image_resized)
return image_resized
def generate_grid(x, y, stride):
x_coords = np.arange(0, x, grid_stride)
y_coords = np.arange(0, y, grid_stride)
x_mesh, y_mesh = np.meshgrid(x_coords, y_coords)
kp = np.column_stack((x_mesh.ravel(), y_mesh.ravel())).astype(float)
return kp
def pca(feat, pca_dim=3):
feat_flattened = feat
mean = torch.mean(feat_flattened, dim=0)
centered_features = feat_flattened - mean
U, S, V = torch.pca_lowrank(centered_features, q=pca_dim)
reduced_features = torch.matmul(centered_features, V[:, :pca_dim])
return reduced_features
def co_pca(feat1, feat2, pca_dim=3):
co_feats = torch.cat((feat1.reshape(-1, feat1.shape[-1]), feat2.reshape(-1, feat2.shape[-1])), dim=0)
feats = pca(co_feats)
feat1_pca = feats[:feat1.shape[0]*feat1.shape[1]].reshape(feat1.shape[0], feat1.shape[1], -1)
feat2_pca = feats[feat1.shape[0]*feat1.shape[1]:].reshape(feat2.shape[0], feat2.shape[1], -1)
return feat1_pca, feat2_pca
def draw_correspondence(feat1, feat2, color1, mask1, mask2):
original_mask2_shape = mask2.shape
mask1, mask2 = mask1.reshape(-1), mask2.reshape(-1)
distances = torch.cdist(feat1.reshape(-1, feat1.shape[-1])[mask1], feat2.reshape(-1, feat2.shape[-1])[mask2])
nearest = torch.argmin(distances, dim=0)
color2 = torch.zeros((mask2.shape[0], 3,)).to(device)
color2[mask2] = color1.reshape(-1, 3)[mask1][nearest]
color2 = color2.reshape(*original_mask2_shape, 3)
return color2
def load_model(options):
original_models = {}
fine_models = {}
for option in tqdm(options):
print('Please wait ...')
print('loading weights of ', option)
fine_models[option] = torch.hub.load(".", model_card[option], source='local').to(device)
original_models[option] = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=fine_models[option].backbone_name).eval().to(device)
print('Done! Now play the demo :)')
return original_models, fine_models
if __name__ == "__main__":
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
print("device: ")
print(device)
example_dir = "examples"
os.makedirs(example_dir, exist_ok=True)
image_input1 = gr.Image(label="Choose an image:",
height=500,
type="pil",
image_mode='RGB',
sources=['upload', 'webcam', 'clipboard']
)
image_input2 = gr.Image(label="Choose another image:",
height=500,
type="pil",
image_mode='RGB',
sources=['upload', 'webcam', 'clipboard']
)
options = ['DINOv2-Base']
model_option = gr.Radio(options, value="DINOv2-Base", label='Choose a 2D foundation model')
model_card = {
"DINOv2-Base": "dinov2_base",
}
os.environ['TORCH_HOME'] = '/tmp/.cache'
# os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
# Pre-load all models
original_models, fine_models = load_model(options)
@spaces.GPU
def main(image1, image2, model_option, kmeans_num):
if image1 is None or image2 is None:
return None
# Select model
original_model = original_models[model_option]
fine_model = fine_models[model_option]
images_resized = [process_image(image, 640, 14, decimation=8) for image in [image1, image2]]
masks = [torch.from_numpy(get_bg_mask(image)).to(device) for image in [image1, image2]]
feat_shapes = [(images_resized[0].shape[-2] // 14, images_resized[0].shape[-1] // 14),
(images_resized[1].shape[-2] // 14, images_resized[1].shape[-1] // 14)]
masks_resized = [T.functional.resize(mask.float()[None], feat_shape,
interpolation=T.functional.InterpolationMode.NEAREST_EXACT)[0]
for mask, feat_shape in zip(masks, feat_shapes)]
with torch.no_grad():
original_feats = [original_model.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1)
for image, feat_shape in zip(images_resized, feat_shapes)]
original_feats = [F.normalize(feat, p=2, dim=-1) for feat in original_feats]
original_color1 = torch.zeros((original_feats[0].shape[0] * original_feats[0].shape[1], 3,)).to(device)
color = pca((original_feats[0][masks_resized[0] > 0]), 3)
color = (color - color.min()) / (color.max() - color.min())
original_color1[masks_resized[0].reshape(-1) > 0] = color
original_color1 = original_color1.reshape(*original_feats[0].shape[:2], 3)
original_color2 = draw_correspondence(original_feats[0], original_feats[1], original_color1,
masks_resized[0] > 0, masks_resized[1] > 0)
fine_feats = [fine_model.dinov2.forward_features(image[None])['x_norm_patchtokens'].reshape(*feat_shape, -1)
for image, feat_shape in zip(images_resized, feat_shapes)]
fine_feats = [fine_model.refine_conv(feat[None].permute(0, 3, 1, 2)).permute(0, 2, 3, 1)[0] for feat in fine_feats]
fine_feats = [F.normalize(feat, p=2, dim=-1) for feat in fine_feats]
fine_color2 = draw_correspondence(fine_feats[0], fine_feats[1], original_color1,
masks_resized[0] > 0, masks_resized[1] > 0)
fig, ax = plt.subplots(2, 2, squeeze=False)
ax[0][0].imshow(original_color1.cpu().numpy())
ax[0][1].text(-0.1, 0.5, "Original " + model_option, fontsize=7, rotation=90, va='center', transform=ax[0][1].transAxes)
ax[0][1].imshow(original_color2.cpu().numpy())
# ax[1][0].imshow(fine_color1.cpu().numpy())
ax[1][1].text(-0.1, 0.5, "Finetuned " + model_option, fontsize=7, rotation=90, va='center', transform=ax[1][1].transAxes)
ax[1][1].imshow(fine_color2.cpu().numpy())
for xx in ax:
for x in xx:
x.xaxis.set_major_formatter(plt.NullFormatter())
x.yaxis.set_major_formatter(plt.NullFormatter())
x.set_xticks([])
x.set_yticks([])
x.axis('off')
plt.tight_layout()
plt.close(fig)
return fig
demo = gr.Interface(
title="<center> \
<h1>3DCorrEnhance</h1> \
<h2>Multiview Equivariance Improves 3D Correspondence Understanding with Minimal Feature Finetuning</h2> \
<h2>ICLR 2025</h2> \
</center>",
description="",
fn=main,
inputs=[image_input1, image_input2, model_option],
outputs="plot",
examples=[
["examples/objs/1-1.png", "examples/objs/1-2.png", "DINOv2-Base"],
["examples/scenes/1-1.jpg", "examples/scenes/1-2.jpg", "DINOv2-Base"],
["examples/scenes/2-1.jpg", "examples/scenes/2-2.jpg", "DINOv2-Base"],
],
cache_examples=True)
demo.launch()
|