File size: 7,063 Bytes
bd94e77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import logging
import os
from pathlib import Path
import sys
import uuid

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import librosa
import numpy as np
import pandas as pd
from scipy.io import wavfile
import torch
import torch.nn as nn
import torchaudio
from tqdm import tqdm

from toolbox.torchaudio.models.simple_linear_irm.modeling_simple_linear_irm import SimpleLinearIRMPretrainedModel


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
    parser.add_argument("--model_dir", default="serialization_dir/best", type=str)
    parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str)

    parser.add_argument("--limit", default=10, type=int)

    args = parser.parse_args()
    return args


def logging_config():
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.INFO)
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.INFO)
    stream_handler.setFormatter(logging.Formatter(fmt))

    logger = logging.getLogger(__name__)

    return logger


def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float):
    l1 = len(speech)
    l2 = len(noise)
    l = min(l1, l2)
    speech = speech[:l]
    noise = noise[:l]

    # np.float32, value between (-1, 1).

    speech_power = np.mean(np.square(speech))
    noise_power = speech_power / (10 ** (snr_db / 10))

    noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2))

    noisy_signal = speech + noise_adjusted

    return noisy_signal


stft_power = torchaudio.transforms.Spectrogram(
    n_fft=512,
    win_length=200,
    hop_length=80,
    power=2.0,
    window_fn=torch.hamming_window,
)


stft_complex = torchaudio.transforms.Spectrogram(
    n_fft=512,
    win_length=200,
    hop_length=80,
    power=None,
    window_fn=torch.hamming_window,
)


istft = torchaudio.transforms.InverseSpectrogram(
    n_fft=512,
    win_length=200,
    hop_length=80,
    window_fn=torch.hamming_window,
)


def enhance(mix_spec_complex: torch.Tensor, speech_irm_prediction: torch.Tensor):
    mix_spec_complex = mix_spec_complex.detach().cpu()
    speech_irm_prediction = speech_irm_prediction.detach().cpu()

    mask_speech = speech_irm_prediction
    mask_noise = 1.0 - speech_irm_prediction

    speech_spec = mix_spec_complex * mask_speech
    noise_spec = mix_spec_complex * mask_noise

    speech_wave = istft.forward(speech_spec)
    noise_wave = istft.forward(noise_spec)

    return speech_wave, noise_wave


def save_audios(noise_wave: torch.Tensor,
                speech_wave: torch.Tensor,
                mix_wave: torch.Tensor,
                speech_wave_enhanced: torch.Tensor,
                noise_wave_enhanced: torch.Tensor,
                output_dir: str,
                sample_rate: int = 8000,
                ):
    basename = uuid.uuid4().__str__()
    output_dir = Path(output_dir) / basename
    output_dir.mkdir(parents=True, exist_ok=True)

    filename = output_dir / "noise_wave.wav"
    torchaudio.save(filename, noise_wave, sample_rate)
    filename = output_dir / "speech_wave.wav"
    torchaudio.save(filename, speech_wave, sample_rate)
    filename = output_dir / "mix_wave.wav"
    torchaudio.save(filename, mix_wave, sample_rate)

    filename = output_dir / "speech_wave_enhanced.wav"
    torchaudio.save(filename, speech_wave_enhanced, sample_rate)
    filename = output_dir / "noise_wave_enhanced.wav"
    torchaudio.save(filename, noise_wave_enhanced, sample_rate)

    return output_dir.as_posix()


def main():
    args = get_args()

    logger = logging_config()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("GPU available count: {}; device: {}".format(n_gpu, device))

    logger.info("prepare model")
    model = SimpleLinearIRMPretrainedModel.from_pretrained(
        pretrained_model_name_or_path=args.model_dir,
    )
    model.to(device)
    model.eval()

    # optimizer
    logger.info("prepare loss_fn")
    mse_loss = nn.MSELoss(
        reduction="mean",
    )

    logger.info("read excel")
    df = pd.read_excel(args.valid_dataset)

    total_loss = 0.
    total_examples = 0.
    progress_bar = tqdm(total=len(df), desc="Evaluation")
    for idx, row in df.iterrows():
        noise_filename = row["noise_filename"]
        noise_offset = row["noise_offset"]
        noise_duration = row["noise_duration"]

        speech_filename = row["speech_filename"]
        speech_offset = row["speech_offset"]
        speech_duration = row["speech_duration"]

        snr_db = row["snr_db"]

        noise_wave, _ = librosa.load(
            noise_filename,
            sr=8000,
            offset=noise_offset,
            duration=noise_duration,
        )
        speech_wave, _ = librosa.load(
            speech_filename,
            sr=8000,
            offset=speech_offset,
            duration=speech_duration,
        )
        mix_wave: np.ndarray = mix_speech_and_noise(
            speech=speech_wave,
            noise=noise_wave,
            snr_db=snr_db,
        )
        noise_wave = torch.tensor(noise_wave, dtype=torch.float32)
        speech_wave = torch.tensor(speech_wave, dtype=torch.float32)
        mix_wave: torch.Tensor = torch.tensor(mix_wave, dtype=torch.float32)

        noise_wave = noise_wave.unsqueeze(dim=0)
        speech_wave = speech_wave.unsqueeze(dim=0)
        mix_wave = mix_wave.unsqueeze(dim=0)

        noise_spec: torch.Tensor = stft_power.forward(noise_wave)
        speech_spec: torch.Tensor = stft_power.forward(speech_wave)
        mix_spec: torch.Tensor = stft_power.forward(mix_wave)
        mix_spec_complex: torch.Tensor = stft_complex.forward(mix_wave)

        speech_irm = speech_spec / (noise_spec + speech_spec)
        speech_irm = torch.pow(speech_irm, 1.0)

        mix_spec = mix_spec.to(device)
        speech_irm_target = speech_irm.to(device)
        with torch.no_grad():
            speech_irm_prediction = model.forward(mix_spec)
            loss = mse_loss.forward(speech_irm_prediction, speech_irm_target)

        speech_wave_enhanced, noise_wave_enhanced = enhance(mix_spec_complex, speech_irm_prediction)
        save_audios(noise_wave, speech_wave, mix_wave, speech_wave_enhanced, noise_wave_enhanced, args.evaluation_audio_dir)

        total_loss += loss.item()
        total_examples += mix_spec.size(0)

        evaluation_loss = total_loss / total_examples
        evaluation_loss = round(evaluation_loss, 4)

        progress_bar.update(1)
        progress_bar.set_postfix({
            "evaluation_loss": evaluation_loss,
        })

        if idx > args.limit:
            break

    return


if __name__ == '__main__':
    main()