Spaces:
Running
Running
Commit
·
bd94e77
0
Parent(s):
first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- .gitignore +21 -0
- Dockerfile +21 -0
- README.md +26 -0
- examples/simple_linear_irm_aishell/run.sh +172 -0
- examples/simple_linear_irm_aishell/step_1_prepare_data.py +196 -0
- examples/simple_linear_irm_aishell/step_2_train_model.py +348 -0
- examples/simple_linear_irm_aishell/step_3_evaluation.py +239 -0
- examples/simple_linear_irm_aishell/yaml/config.yaml +13 -0
- examples/simple_lstm_irm_aishell/run.sh +172 -0
- examples/simple_lstm_irm_aishell/step_1_prepare_data.py +197 -0
- examples/simple_lstm_irm_aishell/step_2_train_model.py +348 -0
- examples/simple_lstm_irm_aishell/step_3_evaluation.py +239 -0
- examples/spectrum_unet_irm_aishell/run.sh +174 -0
- examples/spectrum_unet_irm_aishell/step_1_prepare_data.py +197 -0
- examples/spectrum_unet_irm_aishell/step_2_train_model.py +371 -0
- examples/spectrum_unet_irm_aishell/step_3_evaluation.py +270 -0
- examples/spectrum_unet_irm_aishell/yaml/config.yaml +35 -0
- install.sh +64 -0
- main.py +45 -0
- project_settings.py +25 -0
- requirements-python-3-9-9.txt +10 -0
- requirements.txt +10 -0
- toolbox/__init__.py +6 -0
- toolbox/json/__init__.py +6 -0
- toolbox/json/misc.py +63 -0
- toolbox/os/__init__.py +6 -0
- toolbox/os/command.py +59 -0
- toolbox/os/environment.py +114 -0
- toolbox/os/other.py +9 -0
- toolbox/torch/__init__.py +6 -0
- toolbox/torch/utils/__init__.py +6 -0
- toolbox/torch/utils/data/__init__.py +6 -0
- toolbox/torch/utils/data/dataset/__init__.py +6 -0
- toolbox/torch/utils/data/dataset/denoise_excel_dataset.py +131 -0
- toolbox/torchaudio/__init__.py +5 -0
- toolbox/torchaudio/configuration_utils.py +63 -0
- toolbox/torchaudio/models/__init__.py +5 -0
- toolbox/torchaudio/models/clean_unet/__init__.py +6 -0
- toolbox/torchaudio/models/clean_unet/modeling_clean_unet.py +9 -0
- toolbox/torchaudio/models/dfnet3/__init__.py +6 -0
- toolbox/torchaudio/models/dfnet3/configuration_dfnet3.py +89 -0
- toolbox/torchaudio/models/dfnet3/features.py +192 -0
- toolbox/torchaudio/models/dfnet3/modeling_dfnet3.py +835 -0
- toolbox/torchaudio/models/dfnet3/multiframes.py +145 -0
- toolbox/torchaudio/models/dfnet3/utils.py +17 -0
- toolbox/torchaudio/models/ehnet/__init__.py +6 -0
- toolbox/torchaudio/models/ehnet/modeling_ehnet.py +132 -0
- toolbox/torchaudio/models/percepnet/__init__.py +6 -0
- toolbox/torchaudio/models/percepnet/modeling_percetnet.py +11 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
.git/
|
3 |
+
.idea/
|
4 |
+
|
5 |
+
**/evaluation_audio/
|
6 |
+
**/file_dir/
|
7 |
+
**/flagged/
|
8 |
+
**/log/
|
9 |
+
**/logs/
|
10 |
+
**/__pycache__/
|
11 |
+
|
12 |
+
/data/
|
13 |
+
/docs/
|
14 |
+
/dotenv/
|
15 |
+
/hub_datasets/
|
16 |
+
/thirdparty/
|
17 |
+
/trained_models/
|
18 |
+
/temp/
|
19 |
+
|
20 |
+
#**/*.wav
|
21 |
+
**/*.xlsx
|
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY . /code
|
6 |
+
|
7 |
+
RUN pip install --upgrade pip
|
8 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
9 |
+
|
10 |
+
RUN useradd -m -u 1000 user
|
11 |
+
|
12 |
+
USER user
|
13 |
+
|
14 |
+
ENV HOME=/home/user \
|
15 |
+
PATH=/home/user/.local/bin:$PATH
|
16 |
+
|
17 |
+
WORKDIR $HOME/app
|
18 |
+
|
19 |
+
COPY --chown=user . $HOME/app
|
20 |
+
|
21 |
+
CMD ["python3", "main.py"]
|
README.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: VM Sound Classification
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: blue
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: apache-2.0
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
12 |
+
## NX Denoise
|
13 |
+
|
14 |
+
|
15 |
+
### speech datasets
|
16 |
+
|
17 |
+
```text
|
18 |
+
|
19 |
+
AISHELL (15G)
|
20 |
+
https://openslr.trmal.net/resources/33/
|
21 |
+
|
22 |
+
AISHELL-3 (19G)
|
23 |
+
http://www.openslr.org/93/
|
24 |
+
|
25 |
+
```
|
26 |
+
|
examples/simple_linear_irm_aishell/run.sh
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
: <<'END'
|
4 |
+
|
5 |
+
sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name file_dir
|
6 |
+
|
7 |
+
sh run.sh --stage 3 --stop_stage 3 --system_version windows --file_folder_name file_dir
|
8 |
+
|
9 |
+
sh run.sh --stage 1 --stop_stage 3 --system_version centos --file_folder_name file_dir \
|
10 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
11 |
+
--speech_dir "/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train"
|
12 |
+
|
13 |
+
|
14 |
+
END
|
15 |
+
|
16 |
+
|
17 |
+
# params
|
18 |
+
system_version="windows";
|
19 |
+
verbose=true;
|
20 |
+
stage=0 # start from 0 if you need to start from data preparation
|
21 |
+
stop_stage=9
|
22 |
+
|
23 |
+
work_dir="$(pwd)"
|
24 |
+
file_folder_name=file_folder_name
|
25 |
+
final_model_name=final_model_name
|
26 |
+
config_file="yaml/config.yaml"
|
27 |
+
limit=10
|
28 |
+
|
29 |
+
noise_dir=/data/tianxing/HuggingDatasets/nx_noise/data/noise
|
30 |
+
speech_dir=/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train
|
31 |
+
|
32 |
+
nohup_name=nohup.out
|
33 |
+
|
34 |
+
# model params
|
35 |
+
batch_size=64
|
36 |
+
max_epochs=200
|
37 |
+
save_top_k=10
|
38 |
+
patience=5
|
39 |
+
|
40 |
+
|
41 |
+
# parse options
|
42 |
+
while true; do
|
43 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
44 |
+
case "$1" in
|
45 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
46 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
47 |
+
old_value="(eval echo \\$$name)";
|
48 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
49 |
+
was_bool=true;
|
50 |
+
else
|
51 |
+
was_bool=false;
|
52 |
+
fi
|
53 |
+
|
54 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
55 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
56 |
+
eval "${name}=\"$2\"";
|
57 |
+
|
58 |
+
# Check that Boolean-valued arguments are really Boolean.
|
59 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
60 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
61 |
+
exit 1;
|
62 |
+
fi
|
63 |
+
shift 2;
|
64 |
+
;;
|
65 |
+
|
66 |
+
*) break;
|
67 |
+
esac
|
68 |
+
done
|
69 |
+
|
70 |
+
file_dir="${work_dir}/${file_folder_name}"
|
71 |
+
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
72 |
+
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
73 |
+
|
74 |
+
dataset="${file_dir}/dataset.xlsx"
|
75 |
+
train_dataset="${file_dir}/train.xlsx"
|
76 |
+
valid_dataset="${file_dir}/valid.xlsx"
|
77 |
+
|
78 |
+
$verbose && echo "system_version: ${system_version}"
|
79 |
+
$verbose && echo "file_folder_name: ${file_folder_name}"
|
80 |
+
|
81 |
+
if [ $system_version == "windows" ]; then
|
82 |
+
alias python3='D:/Users/tianx/PycharmProjects/virtualenv/nx_denoise/Scripts/python.exe'
|
83 |
+
elif [ $system_version == "centos" ] || [ $system_version == "ubuntu" ]; then
|
84 |
+
#source /data/local/bin/nx_denoise/bin/activate
|
85 |
+
alias python3='/data/local/bin/nx_denoise/bin/python3'
|
86 |
+
fi
|
87 |
+
|
88 |
+
|
89 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
90 |
+
$verbose && echo "stage 1: prepare data"
|
91 |
+
cd "${work_dir}" || exit 1
|
92 |
+
python3 step_1_prepare_data.py \
|
93 |
+
--file_dir "${file_dir}" \
|
94 |
+
--noise_dir "${noise_dir}" \
|
95 |
+
--speech_dir "${speech_dir}" \
|
96 |
+
--train_dataset "${train_dataset}" \
|
97 |
+
--valid_dataset "${valid_dataset}" \
|
98 |
+
|
99 |
+
fi
|
100 |
+
|
101 |
+
|
102 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
103 |
+
$verbose && echo "stage 2: train model"
|
104 |
+
cd "${work_dir}" || exit 1
|
105 |
+
python3 step_2_train_model.py \
|
106 |
+
--train_dataset "${train_dataset}" \
|
107 |
+
--valid_dataset "${valid_dataset}" \
|
108 |
+
--serialization_dir "${file_dir}" \
|
109 |
+
--config_file "${config_file}" \
|
110 |
+
|
111 |
+
fi
|
112 |
+
|
113 |
+
|
114 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
115 |
+
$verbose && echo "stage 3: test model"
|
116 |
+
cd "${work_dir}" || exit 1
|
117 |
+
python3 step_3_evaluation.py \
|
118 |
+
--valid_dataset "${valid_dataset}" \
|
119 |
+
--model_dir "${file_dir}/best" \
|
120 |
+
--evaluation_audio_dir "${evaluation_audio_dir}" \
|
121 |
+
--limit "${limit}" \
|
122 |
+
|
123 |
+
fi
|
124 |
+
|
125 |
+
|
126 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
127 |
+
$verbose && echo "stage 4: export model"
|
128 |
+
cd "${work_dir}" || exit 1
|
129 |
+
python3 step_5_export_models.py \
|
130 |
+
--vocabulary_dir "${vocabulary_dir}" \
|
131 |
+
--model_dir "${file_dir}/best" \
|
132 |
+
--serialization_dir "${file_dir}" \
|
133 |
+
|
134 |
+
fi
|
135 |
+
|
136 |
+
|
137 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
138 |
+
$verbose && echo "stage 5: collect files"
|
139 |
+
cd "${work_dir}" || exit 1
|
140 |
+
|
141 |
+
mkdir -p ${final_model_dir}
|
142 |
+
|
143 |
+
cp "${file_dir}/best"/* "${final_model_dir}"
|
144 |
+
cp -r "${file_dir}/vocabulary" "${final_model_dir}"
|
145 |
+
|
146 |
+
cp "${file_dir}/evaluation.xlsx" "${final_model_dir}/evaluation.xlsx"
|
147 |
+
|
148 |
+
cp "${file_dir}/trace_model.zip" "${final_model_dir}/trace_model.zip"
|
149 |
+
cp "${file_dir}/trace_quant_model.zip" "${final_model_dir}/trace_quant_model.zip"
|
150 |
+
cp "${file_dir}/script_model.zip" "${final_model_dir}/script_model.zip"
|
151 |
+
cp "${file_dir}/script_quant_model.zip" "${final_model_dir}/script_quant_model.zip"
|
152 |
+
|
153 |
+
cd "${final_model_dir}/.." || exit 1;
|
154 |
+
|
155 |
+
if [ -e "${final_model_name}.zip" ]; then
|
156 |
+
rm -rf "${final_model_name}_backup.zip"
|
157 |
+
mv "${final_model_name}.zip" "${final_model_name}_backup.zip"
|
158 |
+
fi
|
159 |
+
|
160 |
+
zip -r "${final_model_name}.zip" "${final_model_name}"
|
161 |
+
rm -rf "${final_model_name}"
|
162 |
+
|
163 |
+
fi
|
164 |
+
|
165 |
+
|
166 |
+
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
167 |
+
$verbose && echo "stage 6: clear file_dir"
|
168 |
+
cd "${work_dir}" || exit 1
|
169 |
+
|
170 |
+
rm -rf "${file_dir}";
|
171 |
+
|
172 |
+
fi
|
examples/simple_linear_irm_aishell/step_1_prepare_data.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from tqdm import tqdm
|
16 |
+
import librosa
|
17 |
+
|
18 |
+
from project_settings import project_path
|
19 |
+
|
20 |
+
|
21 |
+
def get_args():
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument("--file_dir", default="./", type=str)
|
24 |
+
|
25 |
+
parser.add_argument(
|
26 |
+
"--noise_dir",
|
27 |
+
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
28 |
+
type=str
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--speech_dir",
|
32 |
+
default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
|
33 |
+
type=str
|
34 |
+
)
|
35 |
+
|
36 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
37 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
38 |
+
|
39 |
+
parser.add_argument("--duration", default=2.0, type=float)
|
40 |
+
parser.add_argument("--min_nsr_db", default=-20, type=float)
|
41 |
+
parser.add_argument("--max_nsr_db", default=5, type=float)
|
42 |
+
|
43 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
44 |
+
|
45 |
+
args = parser.parse_args()
|
46 |
+
return args
|
47 |
+
|
48 |
+
|
49 |
+
def filename_generator(data_dir: str):
|
50 |
+
data_dir = Path(data_dir)
|
51 |
+
for filename in data_dir.glob("**/*.wav"):
|
52 |
+
yield filename.as_posix()
|
53 |
+
|
54 |
+
|
55 |
+
def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000):
|
56 |
+
data_dir = Path(data_dir)
|
57 |
+
for filename in data_dir.glob("**/*.wav"):
|
58 |
+
signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
|
59 |
+
raw_duration = librosa.get_duration(y=signal, sr=sample_rate)
|
60 |
+
|
61 |
+
if raw_duration < duration:
|
62 |
+
# print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
|
63 |
+
continue
|
64 |
+
if signal.ndim != 1:
|
65 |
+
raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")
|
66 |
+
|
67 |
+
signal_length = len(signal)
|
68 |
+
win_size = int(duration * sample_rate)
|
69 |
+
for begin in range(0, signal_length - win_size, win_size):
|
70 |
+
row = {
|
71 |
+
"filename": filename.as_posix(),
|
72 |
+
"raw_duration": round(raw_duration, 4),
|
73 |
+
"offset": round(begin / sample_rate, 4),
|
74 |
+
"duration": round(duration, 4),
|
75 |
+
}
|
76 |
+
yield row
|
77 |
+
|
78 |
+
|
79 |
+
def get_dataset(args):
|
80 |
+
file_dir = Path(args.file_dir)
|
81 |
+
file_dir.mkdir(exist_ok=True)
|
82 |
+
|
83 |
+
noise_dir = Path(args.noise_dir)
|
84 |
+
speech_dir = Path(args.speech_dir)
|
85 |
+
|
86 |
+
noise_generator = target_second_signal_generator(
|
87 |
+
noise_dir.as_posix(),
|
88 |
+
duration=args.duration,
|
89 |
+
sample_rate=args.target_sample_rate
|
90 |
+
)
|
91 |
+
speech_generator = target_second_signal_generator(
|
92 |
+
speech_dir.as_posix(),
|
93 |
+
duration=args.duration,
|
94 |
+
sample_rate=args.target_sample_rate
|
95 |
+
)
|
96 |
+
|
97 |
+
dataset = list()
|
98 |
+
|
99 |
+
count = 0
|
100 |
+
process_bar = tqdm(desc="build dataset excel")
|
101 |
+
for noise, speech in zip(noise_generator, speech_generator):
|
102 |
+
|
103 |
+
noise_filename = noise["filename"]
|
104 |
+
noise_raw_duration = noise["raw_duration"]
|
105 |
+
noise_offset = noise["offset"]
|
106 |
+
noise_duration = noise["duration"]
|
107 |
+
|
108 |
+
speech_filename = speech["filename"]
|
109 |
+
speech_raw_duration = speech["raw_duration"]
|
110 |
+
speech_offset = speech["offset"]
|
111 |
+
speech_duration = speech["duration"]
|
112 |
+
|
113 |
+
random1 = random.random()
|
114 |
+
random2 = random.random()
|
115 |
+
|
116 |
+
row = {
|
117 |
+
"noise_filename": noise_filename,
|
118 |
+
"noise_raw_duration": noise_raw_duration,
|
119 |
+
"noise_offset": noise_offset,
|
120 |
+
"noise_duration": noise_duration,
|
121 |
+
|
122 |
+
"speech_filename": speech_filename,
|
123 |
+
"speech_raw_duration": speech_raw_duration,
|
124 |
+
"speech_offset": speech_offset,
|
125 |
+
"speech_duration": speech_duration,
|
126 |
+
|
127 |
+
"snr_db": random.uniform(args.min_nsr_db, args.max_nsr_db),
|
128 |
+
|
129 |
+
"random1": random1,
|
130 |
+
"random2": random2,
|
131 |
+
"flag": "TRAIN" if random2 < 0.8 else "TEST",
|
132 |
+
}
|
133 |
+
dataset.append(row)
|
134 |
+
count += 1
|
135 |
+
duration_seconds = count * args.duration
|
136 |
+
duration_hours = duration_seconds / 3600
|
137 |
+
|
138 |
+
process_bar.update(n=1)
|
139 |
+
process_bar.set_postfix({
|
140 |
+
# "duration_seconds": round(duration_seconds, 4),
|
141 |
+
"duration_hours": round(duration_hours, 4),
|
142 |
+
})
|
143 |
+
|
144 |
+
dataset = pd.DataFrame(dataset)
|
145 |
+
dataset = dataset.sort_values(by=["random1"], ascending=False)
|
146 |
+
dataset.to_excel(
|
147 |
+
file_dir / "dataset.xlsx",
|
148 |
+
index=False,
|
149 |
+
)
|
150 |
+
return
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
def split_dataset(args):
|
155 |
+
"""分割训练集, 测试集"""
|
156 |
+
file_dir = Path(args.file_dir)
|
157 |
+
file_dir.mkdir(exist_ok=True)
|
158 |
+
|
159 |
+
df = pd.read_excel(file_dir / "dataset.xlsx")
|
160 |
+
|
161 |
+
train = list()
|
162 |
+
test = list()
|
163 |
+
|
164 |
+
for i, row in df.iterrows():
|
165 |
+
flag = row["flag"]
|
166 |
+
if flag == "TRAIN":
|
167 |
+
train.append(row)
|
168 |
+
else:
|
169 |
+
test.append(row)
|
170 |
+
|
171 |
+
train = pd.DataFrame(train)
|
172 |
+
train.to_excel(
|
173 |
+
args.train_dataset,
|
174 |
+
index=False,
|
175 |
+
# encoding="utf_8_sig"
|
176 |
+
)
|
177 |
+
test = pd.DataFrame(test)
|
178 |
+
test.to_excel(
|
179 |
+
args.valid_dataset,
|
180 |
+
index=False,
|
181 |
+
# encoding="utf_8_sig"
|
182 |
+
)
|
183 |
+
|
184 |
+
return
|
185 |
+
|
186 |
+
|
187 |
+
def main():
|
188 |
+
args = get_args()
|
189 |
+
|
190 |
+
get_dataset(args)
|
191 |
+
split_dataset(args)
|
192 |
+
return
|
193 |
+
|
194 |
+
|
195 |
+
if __name__ == "__main__":
|
196 |
+
main()
|
examples/simple_linear_irm_aishell/step_2_train_model.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/WenzheLiu-Speech/awesome-speech-enhancement
|
5 |
+
"""
|
6 |
+
import argparse
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
from logging.handlers import TimedRotatingFileHandler
|
10 |
+
import os
|
11 |
+
import platform
|
12 |
+
from pathlib import Path
|
13 |
+
import random
|
14 |
+
import sys
|
15 |
+
import shutil
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
from torch import dtype
|
19 |
+
|
20 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
21 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
from torch.utils.data.dataloader import DataLoader
|
27 |
+
import torchaudio
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
|
31 |
+
from toolbox.torchaudio.models.simple_linear_irm.configuration_simple_linear_irm import SimpleLinearIRMConfig
|
32 |
+
from toolbox.torchaudio.models.simple_linear_irm.modeling_simple_linear_irm import SimpleLinearIRMPretrainedModel
|
33 |
+
|
34 |
+
|
35 |
+
def get_args():
|
36 |
+
parser = argparse.ArgumentParser()
|
37 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
38 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
39 |
+
|
40 |
+
parser.add_argument("--max_epochs", default=100, type=int)
|
41 |
+
|
42 |
+
parser.add_argument("--batch_size", default=64, type=int)
|
43 |
+
parser.add_argument("--learning_rate", default=1e-3, type=float)
|
44 |
+
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
|
45 |
+
parser.add_argument("--patience", default=5, type=int)
|
46 |
+
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
47 |
+
parser.add_argument("--seed", default=0, type=int)
|
48 |
+
|
49 |
+
parser.add_argument("--config_file", default="config.yaml", type=str)
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
return args
|
53 |
+
|
54 |
+
|
55 |
+
def logging_config(file_dir: str):
|
56 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
57 |
+
|
58 |
+
logging.basicConfig(format=fmt,
|
59 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
60 |
+
level=logging.INFO)
|
61 |
+
file_handler = TimedRotatingFileHandler(
|
62 |
+
filename=os.path.join(file_dir, "main.log"),
|
63 |
+
encoding="utf-8",
|
64 |
+
when="D",
|
65 |
+
interval=1,
|
66 |
+
backupCount=7
|
67 |
+
)
|
68 |
+
file_handler.setLevel(logging.INFO)
|
69 |
+
file_handler.setFormatter(logging.Formatter(fmt))
|
70 |
+
logger = logging.getLogger(__name__)
|
71 |
+
logger.addHandler(file_handler)
|
72 |
+
|
73 |
+
return logger
|
74 |
+
|
75 |
+
|
76 |
+
class CollateFunction(object):
|
77 |
+
def __init__(self,
|
78 |
+
n_fft: int = 512,
|
79 |
+
win_length: int = 200,
|
80 |
+
hop_length: int = 80,
|
81 |
+
window_fn: str = "hamming",
|
82 |
+
irm_beta: float = 1.0,
|
83 |
+
epsilon: float = 1e-8,
|
84 |
+
):
|
85 |
+
self.n_fft = n_fft
|
86 |
+
self.win_length = win_length
|
87 |
+
self.hop_length = hop_length
|
88 |
+
self.window_fn = window_fn
|
89 |
+
self.irm_beta = irm_beta
|
90 |
+
self.epsilon = epsilon
|
91 |
+
|
92 |
+
self.transform = torchaudio.transforms.Spectrogram(
|
93 |
+
n_fft=self.n_fft,
|
94 |
+
win_length=self.win_length,
|
95 |
+
hop_length=self.hop_length,
|
96 |
+
power=2.0,
|
97 |
+
window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
|
98 |
+
)
|
99 |
+
|
100 |
+
def __call__(self, batch: List[dict]):
|
101 |
+
mix_spec_list = list()
|
102 |
+
speech_irm_list = list()
|
103 |
+
snr_db_list = list()
|
104 |
+
for sample in batch:
|
105 |
+
noise_wave: torch.Tensor = sample["noise_wave"]
|
106 |
+
speech_wave: torch.Tensor = sample["speech_wave"]
|
107 |
+
mix_wave: torch.Tensor = sample["mix_wave"]
|
108 |
+
snr_db: float = sample["snr_db"]
|
109 |
+
|
110 |
+
noise_spec = self.transform.forward(noise_wave)
|
111 |
+
speech_spec = self.transform.forward(speech_wave)
|
112 |
+
mix_spec = self.transform.forward(mix_wave)
|
113 |
+
|
114 |
+
# noise_irm = noise_spec / (noise_spec + speech_spec)
|
115 |
+
speech_irm = speech_spec / (noise_spec + speech_spec + self.epsilon)
|
116 |
+
speech_irm = torch.pow(speech_irm, self.irm_beta)
|
117 |
+
|
118 |
+
mix_spec_list.append(mix_spec)
|
119 |
+
speech_irm_list.append(speech_irm)
|
120 |
+
snr_db_list.append(torch.tensor(snr_db, dtype=torch.float32))
|
121 |
+
|
122 |
+
mix_spec_list = torch.stack(mix_spec_list)
|
123 |
+
speech_irm_list = torch.stack(speech_irm_list)
|
124 |
+
snr_db_list = torch.stack(snr_db_list) # shape: (batch_size,)
|
125 |
+
|
126 |
+
# assert
|
127 |
+
if torch.any(torch.isnan(mix_spec_list)):
|
128 |
+
raise AssertionError("nan in mix_spec Tensor")
|
129 |
+
if torch.any(torch.isnan(speech_irm_list)):
|
130 |
+
raise AssertionError("nan in speech_irm Tensor")
|
131 |
+
if torch.any(torch.isnan(snr_db_list)):
|
132 |
+
raise AssertionError("nan in snr_db Tensor")
|
133 |
+
|
134 |
+
return mix_spec_list, speech_irm_list, snr_db_list
|
135 |
+
|
136 |
+
|
137 |
+
collate_fn = CollateFunction()
|
138 |
+
|
139 |
+
|
140 |
+
def main():
|
141 |
+
args = get_args()
|
142 |
+
|
143 |
+
serialization_dir = Path(args.serialization_dir)
|
144 |
+
serialization_dir.mkdir(parents=True, exist_ok=True)
|
145 |
+
|
146 |
+
logger = logging_config(serialization_dir)
|
147 |
+
|
148 |
+
random.seed(args.seed)
|
149 |
+
np.random.seed(args.seed)
|
150 |
+
torch.manual_seed(args.seed)
|
151 |
+
logger.info("set seed: {}".format(args.seed))
|
152 |
+
|
153 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
154 |
+
n_gpu = torch.cuda.device_count()
|
155 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
156 |
+
|
157 |
+
# datasets
|
158 |
+
logger.info("prepare datasets")
|
159 |
+
train_dataset = DenoiseExcelDataset(
|
160 |
+
excel_file=args.train_dataset,
|
161 |
+
expected_sample_rate=8000,
|
162 |
+
max_wave_value=32768.0,
|
163 |
+
)
|
164 |
+
valid_dataset = DenoiseExcelDataset(
|
165 |
+
excel_file=args.valid_dataset,
|
166 |
+
expected_sample_rate=8000,
|
167 |
+
max_wave_value=32768.0,
|
168 |
+
)
|
169 |
+
train_data_loader = DataLoader(
|
170 |
+
dataset=train_dataset,
|
171 |
+
batch_size=args.batch_size,
|
172 |
+
shuffle=True,
|
173 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
174 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
175 |
+
collate_fn=collate_fn,
|
176 |
+
pin_memory=False,
|
177 |
+
# prefetch_factor=64,
|
178 |
+
)
|
179 |
+
valid_data_loader = DataLoader(
|
180 |
+
dataset=valid_dataset,
|
181 |
+
batch_size=args.batch_size,
|
182 |
+
shuffle=True,
|
183 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
184 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
185 |
+
collate_fn=collate_fn,
|
186 |
+
pin_memory=False,
|
187 |
+
# prefetch_factor=64,
|
188 |
+
)
|
189 |
+
|
190 |
+
# models
|
191 |
+
logger.info(f"prepare models. config_file: {args.config_file}")
|
192 |
+
config = SimpleLinearIRMConfig.from_pretrained(
|
193 |
+
pretrained_model_name_or_path=args.config_file,
|
194 |
+
# num_labels=vocabulary.get_vocab_size(namespace="labels")
|
195 |
+
)
|
196 |
+
model = SimpleLinearIRMPretrainedModel(
|
197 |
+
config=config,
|
198 |
+
)
|
199 |
+
model.to(device)
|
200 |
+
model.train()
|
201 |
+
|
202 |
+
# optimizer
|
203 |
+
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
|
204 |
+
param_optimizer = model.parameters()
|
205 |
+
optimizer = torch.optim.Adam(
|
206 |
+
param_optimizer,
|
207 |
+
lr=args.learning_rate,
|
208 |
+
)
|
209 |
+
# lr_scheduler = torch.optim.lr_scheduler.StepLR(
|
210 |
+
# optimizer,
|
211 |
+
# step_size=2000
|
212 |
+
# )
|
213 |
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
214 |
+
optimizer,
|
215 |
+
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
|
216 |
+
)
|
217 |
+
mse_loss = nn.MSELoss(
|
218 |
+
reduction="mean",
|
219 |
+
)
|
220 |
+
|
221 |
+
# training loop
|
222 |
+
logger.info("training")
|
223 |
+
|
224 |
+
training_loss = 10000000000
|
225 |
+
evaluation_loss = 10000000000
|
226 |
+
|
227 |
+
model_list = list()
|
228 |
+
best_idx_epoch = None
|
229 |
+
best_metric = None
|
230 |
+
patience_count = 0
|
231 |
+
|
232 |
+
for idx_epoch in range(args.max_epochs):
|
233 |
+
total_loss = 0.
|
234 |
+
total_examples = 0.
|
235 |
+
progress_bar = tqdm(
|
236 |
+
total=len(train_data_loader),
|
237 |
+
desc="Training; epoch: {}".format(idx_epoch),
|
238 |
+
)
|
239 |
+
|
240 |
+
for batch in train_data_loader:
|
241 |
+
mix_spec, speech_irm, snr_db = batch
|
242 |
+
mix_spec = mix_spec.to(device)
|
243 |
+
speech_irm_target = speech_irm.to(device)
|
244 |
+
snr_db_target = snr_db.to(device)
|
245 |
+
|
246 |
+
speech_irm_prediction = model.forward(mix_spec)
|
247 |
+
loss = mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
248 |
+
|
249 |
+
total_loss += loss.item()
|
250 |
+
total_examples += mix_spec.size(0)
|
251 |
+
|
252 |
+
optimizer.zero_grad()
|
253 |
+
loss.backward()
|
254 |
+
optimizer.step()
|
255 |
+
lr_scheduler.step()
|
256 |
+
|
257 |
+
training_loss = total_loss / total_examples
|
258 |
+
training_loss = round(training_loss, 4)
|
259 |
+
|
260 |
+
progress_bar.update(1)
|
261 |
+
progress_bar.set_postfix({
|
262 |
+
"training_loss": training_loss,
|
263 |
+
})
|
264 |
+
|
265 |
+
total_loss = 0.
|
266 |
+
total_examples = 0.
|
267 |
+
progress_bar = tqdm(
|
268 |
+
total=len(valid_data_loader),
|
269 |
+
desc="Evaluation; epoch: {}".format(idx_epoch),
|
270 |
+
)
|
271 |
+
for batch in valid_data_loader:
|
272 |
+
mix_spec, speech_irm, snr_db = batch
|
273 |
+
mix_spec = mix_spec.to(device)
|
274 |
+
speech_irm_target = speech_irm.to(device)
|
275 |
+
snr_db_target = snr_db.to(device)
|
276 |
+
|
277 |
+
with torch.no_grad():
|
278 |
+
speech_irm_prediction = model.forward(mix_spec)
|
279 |
+
loss = mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
280 |
+
|
281 |
+
total_loss += loss.item()
|
282 |
+
total_examples += mix_spec.size(0)
|
283 |
+
|
284 |
+
evaluation_loss = total_loss / total_examples
|
285 |
+
evaluation_loss = round(evaluation_loss, 4)
|
286 |
+
|
287 |
+
progress_bar.update(1)
|
288 |
+
progress_bar.set_postfix({
|
289 |
+
"evaluation_loss": evaluation_loss,
|
290 |
+
})
|
291 |
+
|
292 |
+
# save path
|
293 |
+
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
|
294 |
+
epoch_dir.mkdir(parents=True, exist_ok=False)
|
295 |
+
|
296 |
+
# save models
|
297 |
+
model.save_pretrained(epoch_dir.as_posix())
|
298 |
+
|
299 |
+
model_list.append(epoch_dir)
|
300 |
+
if len(model_list) >= args.num_serialized_models_to_keep:
|
301 |
+
model_to_delete: Path = model_list.pop(0)
|
302 |
+
shutil.rmtree(model_to_delete.as_posix())
|
303 |
+
|
304 |
+
# save metric
|
305 |
+
if best_metric is None:
|
306 |
+
best_idx_epoch = idx_epoch
|
307 |
+
best_metric = evaluation_loss
|
308 |
+
elif evaluation_loss < best_metric:
|
309 |
+
best_idx_epoch = idx_epoch
|
310 |
+
best_metric = evaluation_loss
|
311 |
+
else:
|
312 |
+
pass
|
313 |
+
|
314 |
+
metrics = {
|
315 |
+
"idx_epoch": idx_epoch,
|
316 |
+
"best_idx_epoch": best_idx_epoch,
|
317 |
+
"training_loss": training_loss,
|
318 |
+
"evaluation_loss": evaluation_loss,
|
319 |
+
"learning_rate": optimizer.param_groups[0]["lr"],
|
320 |
+
}
|
321 |
+
metrics_filename = epoch_dir / "metrics_epoch.json"
|
322 |
+
with open(metrics_filename, "w", encoding="utf-8") as f:
|
323 |
+
json.dump(metrics, f, indent=4, ensure_ascii=False)
|
324 |
+
|
325 |
+
# save best
|
326 |
+
best_dir = serialization_dir / "best"
|
327 |
+
if best_idx_epoch == idx_epoch:
|
328 |
+
if best_dir.exists():
|
329 |
+
shutil.rmtree(best_dir)
|
330 |
+
shutil.copytree(epoch_dir, best_dir)
|
331 |
+
|
332 |
+
# early stop
|
333 |
+
early_stop_flag = False
|
334 |
+
if best_idx_epoch == idx_epoch:
|
335 |
+
patience_count = 0
|
336 |
+
else:
|
337 |
+
patience_count += 1
|
338 |
+
if patience_count >= args.patience:
|
339 |
+
early_stop_flag = True
|
340 |
+
|
341 |
+
# early stop
|
342 |
+
if early_stop_flag:
|
343 |
+
break
|
344 |
+
return
|
345 |
+
|
346 |
+
|
347 |
+
if __name__ == '__main__':
|
348 |
+
main()
|
examples/simple_linear_irm_aishell/step_3_evaluation.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import sys
|
8 |
+
import uuid
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import librosa
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
from scipy.io import wavfile
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torchaudio
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
from toolbox.torchaudio.models.simple_linear_irm.modeling_simple_linear_irm import SimpleLinearIRMPretrainedModel
|
23 |
+
|
24 |
+
|
25 |
+
def get_args():
|
26 |
+
parser = argparse.ArgumentParser()
|
27 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
28 |
+
parser.add_argument("--model_dir", default="serialization_dir/best", type=str)
|
29 |
+
parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str)
|
30 |
+
|
31 |
+
parser.add_argument("--limit", default=10, type=int)
|
32 |
+
|
33 |
+
args = parser.parse_args()
|
34 |
+
return args
|
35 |
+
|
36 |
+
|
37 |
+
def logging_config():
|
38 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
39 |
+
|
40 |
+
logging.basicConfig(format=fmt,
|
41 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
42 |
+
level=logging.INFO)
|
43 |
+
stream_handler = logging.StreamHandler()
|
44 |
+
stream_handler.setLevel(logging.INFO)
|
45 |
+
stream_handler.setFormatter(logging.Formatter(fmt))
|
46 |
+
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
|
49 |
+
return logger
|
50 |
+
|
51 |
+
|
52 |
+
def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float):
|
53 |
+
l1 = len(speech)
|
54 |
+
l2 = len(noise)
|
55 |
+
l = min(l1, l2)
|
56 |
+
speech = speech[:l]
|
57 |
+
noise = noise[:l]
|
58 |
+
|
59 |
+
# np.float32, value between (-1, 1).
|
60 |
+
|
61 |
+
speech_power = np.mean(np.square(speech))
|
62 |
+
noise_power = speech_power / (10 ** (snr_db / 10))
|
63 |
+
|
64 |
+
noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2))
|
65 |
+
|
66 |
+
noisy_signal = speech + noise_adjusted
|
67 |
+
|
68 |
+
return noisy_signal
|
69 |
+
|
70 |
+
|
71 |
+
stft_power = torchaudio.transforms.Spectrogram(
|
72 |
+
n_fft=512,
|
73 |
+
win_length=200,
|
74 |
+
hop_length=80,
|
75 |
+
power=2.0,
|
76 |
+
window_fn=torch.hamming_window,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
stft_complex = torchaudio.transforms.Spectrogram(
|
81 |
+
n_fft=512,
|
82 |
+
win_length=200,
|
83 |
+
hop_length=80,
|
84 |
+
power=None,
|
85 |
+
window_fn=torch.hamming_window,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
istft = torchaudio.transforms.InverseSpectrogram(
|
90 |
+
n_fft=512,
|
91 |
+
win_length=200,
|
92 |
+
hop_length=80,
|
93 |
+
window_fn=torch.hamming_window,
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def enhance(mix_spec_complex: torch.Tensor, speech_irm_prediction: torch.Tensor):
|
98 |
+
mix_spec_complex = mix_spec_complex.detach().cpu()
|
99 |
+
speech_irm_prediction = speech_irm_prediction.detach().cpu()
|
100 |
+
|
101 |
+
mask_speech = speech_irm_prediction
|
102 |
+
mask_noise = 1.0 - speech_irm_prediction
|
103 |
+
|
104 |
+
speech_spec = mix_spec_complex * mask_speech
|
105 |
+
noise_spec = mix_spec_complex * mask_noise
|
106 |
+
|
107 |
+
speech_wave = istft.forward(speech_spec)
|
108 |
+
noise_wave = istft.forward(noise_spec)
|
109 |
+
|
110 |
+
return speech_wave, noise_wave
|
111 |
+
|
112 |
+
|
113 |
+
def save_audios(noise_wave: torch.Tensor,
|
114 |
+
speech_wave: torch.Tensor,
|
115 |
+
mix_wave: torch.Tensor,
|
116 |
+
speech_wave_enhanced: torch.Tensor,
|
117 |
+
noise_wave_enhanced: torch.Tensor,
|
118 |
+
output_dir: str,
|
119 |
+
sample_rate: int = 8000,
|
120 |
+
):
|
121 |
+
basename = uuid.uuid4().__str__()
|
122 |
+
output_dir = Path(output_dir) / basename
|
123 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
124 |
+
|
125 |
+
filename = output_dir / "noise_wave.wav"
|
126 |
+
torchaudio.save(filename, noise_wave, sample_rate)
|
127 |
+
filename = output_dir / "speech_wave.wav"
|
128 |
+
torchaudio.save(filename, speech_wave, sample_rate)
|
129 |
+
filename = output_dir / "mix_wave.wav"
|
130 |
+
torchaudio.save(filename, mix_wave, sample_rate)
|
131 |
+
|
132 |
+
filename = output_dir / "speech_wave_enhanced.wav"
|
133 |
+
torchaudio.save(filename, speech_wave_enhanced, sample_rate)
|
134 |
+
filename = output_dir / "noise_wave_enhanced.wav"
|
135 |
+
torchaudio.save(filename, noise_wave_enhanced, sample_rate)
|
136 |
+
|
137 |
+
return output_dir.as_posix()
|
138 |
+
|
139 |
+
|
140 |
+
def main():
|
141 |
+
args = get_args()
|
142 |
+
|
143 |
+
logger = logging_config()
|
144 |
+
|
145 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
146 |
+
n_gpu = torch.cuda.device_count()
|
147 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
148 |
+
|
149 |
+
logger.info("prepare model")
|
150 |
+
model = SimpleLinearIRMPretrainedModel.from_pretrained(
|
151 |
+
pretrained_model_name_or_path=args.model_dir,
|
152 |
+
)
|
153 |
+
model.to(device)
|
154 |
+
model.eval()
|
155 |
+
|
156 |
+
# optimizer
|
157 |
+
logger.info("prepare loss_fn")
|
158 |
+
mse_loss = nn.MSELoss(
|
159 |
+
reduction="mean",
|
160 |
+
)
|
161 |
+
|
162 |
+
logger.info("read excel")
|
163 |
+
df = pd.read_excel(args.valid_dataset)
|
164 |
+
|
165 |
+
total_loss = 0.
|
166 |
+
total_examples = 0.
|
167 |
+
progress_bar = tqdm(total=len(df), desc="Evaluation")
|
168 |
+
for idx, row in df.iterrows():
|
169 |
+
noise_filename = row["noise_filename"]
|
170 |
+
noise_offset = row["noise_offset"]
|
171 |
+
noise_duration = row["noise_duration"]
|
172 |
+
|
173 |
+
speech_filename = row["speech_filename"]
|
174 |
+
speech_offset = row["speech_offset"]
|
175 |
+
speech_duration = row["speech_duration"]
|
176 |
+
|
177 |
+
snr_db = row["snr_db"]
|
178 |
+
|
179 |
+
noise_wave, _ = librosa.load(
|
180 |
+
noise_filename,
|
181 |
+
sr=8000,
|
182 |
+
offset=noise_offset,
|
183 |
+
duration=noise_duration,
|
184 |
+
)
|
185 |
+
speech_wave, _ = librosa.load(
|
186 |
+
speech_filename,
|
187 |
+
sr=8000,
|
188 |
+
offset=speech_offset,
|
189 |
+
duration=speech_duration,
|
190 |
+
)
|
191 |
+
mix_wave: np.ndarray = mix_speech_and_noise(
|
192 |
+
speech=speech_wave,
|
193 |
+
noise=noise_wave,
|
194 |
+
snr_db=snr_db,
|
195 |
+
)
|
196 |
+
noise_wave = torch.tensor(noise_wave, dtype=torch.float32)
|
197 |
+
speech_wave = torch.tensor(speech_wave, dtype=torch.float32)
|
198 |
+
mix_wave: torch.Tensor = torch.tensor(mix_wave, dtype=torch.float32)
|
199 |
+
|
200 |
+
noise_wave = noise_wave.unsqueeze(dim=0)
|
201 |
+
speech_wave = speech_wave.unsqueeze(dim=0)
|
202 |
+
mix_wave = mix_wave.unsqueeze(dim=0)
|
203 |
+
|
204 |
+
noise_spec: torch.Tensor = stft_power.forward(noise_wave)
|
205 |
+
speech_spec: torch.Tensor = stft_power.forward(speech_wave)
|
206 |
+
mix_spec: torch.Tensor = stft_power.forward(mix_wave)
|
207 |
+
mix_spec_complex: torch.Tensor = stft_complex.forward(mix_wave)
|
208 |
+
|
209 |
+
speech_irm = speech_spec / (noise_spec + speech_spec)
|
210 |
+
speech_irm = torch.pow(speech_irm, 1.0)
|
211 |
+
|
212 |
+
mix_spec = mix_spec.to(device)
|
213 |
+
speech_irm_target = speech_irm.to(device)
|
214 |
+
with torch.no_grad():
|
215 |
+
speech_irm_prediction = model.forward(mix_spec)
|
216 |
+
loss = mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
217 |
+
|
218 |
+
speech_wave_enhanced, noise_wave_enhanced = enhance(mix_spec_complex, speech_irm_prediction)
|
219 |
+
save_audios(noise_wave, speech_wave, mix_wave, speech_wave_enhanced, noise_wave_enhanced, args.evaluation_audio_dir)
|
220 |
+
|
221 |
+
total_loss += loss.item()
|
222 |
+
total_examples += mix_spec.size(0)
|
223 |
+
|
224 |
+
evaluation_loss = total_loss / total_examples
|
225 |
+
evaluation_loss = round(evaluation_loss, 4)
|
226 |
+
|
227 |
+
progress_bar.update(1)
|
228 |
+
progress_bar.set_postfix({
|
229 |
+
"evaluation_loss": evaluation_loss,
|
230 |
+
})
|
231 |
+
|
232 |
+
if idx > args.limit:
|
233 |
+
break
|
234 |
+
|
235 |
+
return
|
236 |
+
|
237 |
+
|
238 |
+
if __name__ == '__main__':
|
239 |
+
main()
|
examples/simple_linear_irm_aishell/yaml/config.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "simple_linear_irm"
|
2 |
+
|
3 |
+
# spec
|
4 |
+
sample_rate: 8000
|
5 |
+
n_fft: 512
|
6 |
+
win_length: 200
|
7 |
+
hop_length: 80
|
8 |
+
|
9 |
+
# model
|
10 |
+
num_bins: 257
|
11 |
+
hidden_size: 2048
|
12 |
+
lookback: 3
|
13 |
+
lookahead: 3
|
examples/simple_lstm_irm_aishell/run.sh
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
: <<'END'
|
4 |
+
|
5 |
+
sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name file_dir
|
6 |
+
|
7 |
+
sh run.sh --stage 3 --stop_stage 3 --system_version windows --file_folder_name file_dir
|
8 |
+
|
9 |
+
sh run.sh --stage 1 --stop_stage 3 --system_version centos --file_folder_name file_dir \
|
10 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
11 |
+
--speech_dir "/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train"
|
12 |
+
|
13 |
+
|
14 |
+
END
|
15 |
+
|
16 |
+
|
17 |
+
# params
|
18 |
+
system_version="windows";
|
19 |
+
verbose=true;
|
20 |
+
stage=0 # start from 0 if you need to start from data preparation
|
21 |
+
stop_stage=9
|
22 |
+
|
23 |
+
work_dir="$(pwd)"
|
24 |
+
file_folder_name=file_folder_name
|
25 |
+
final_model_name=final_model_name
|
26 |
+
config_file="yaml/config.yaml"
|
27 |
+
limit=10
|
28 |
+
|
29 |
+
noise_dir=/data/tianxing/HuggingDatasets/nx_noise/data/noise
|
30 |
+
speech_dir=/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train
|
31 |
+
|
32 |
+
nohup_name=nohup.out
|
33 |
+
|
34 |
+
# model params
|
35 |
+
batch_size=64
|
36 |
+
max_epochs=200
|
37 |
+
save_top_k=10
|
38 |
+
patience=5
|
39 |
+
|
40 |
+
|
41 |
+
# parse options
|
42 |
+
while true; do
|
43 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
44 |
+
case "$1" in
|
45 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
46 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
47 |
+
old_value="(eval echo \\$$name)";
|
48 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
49 |
+
was_bool=true;
|
50 |
+
else
|
51 |
+
was_bool=false;
|
52 |
+
fi
|
53 |
+
|
54 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
55 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
56 |
+
eval "${name}=\"$2\"";
|
57 |
+
|
58 |
+
# Check that Boolean-valued arguments are really Boolean.
|
59 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
60 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
61 |
+
exit 1;
|
62 |
+
fi
|
63 |
+
shift 2;
|
64 |
+
;;
|
65 |
+
|
66 |
+
*) break;
|
67 |
+
esac
|
68 |
+
done
|
69 |
+
|
70 |
+
file_dir="${work_dir}/${file_folder_name}"
|
71 |
+
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
72 |
+
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
73 |
+
|
74 |
+
dataset="${file_dir}/dataset.xlsx"
|
75 |
+
train_dataset="${file_dir}/train.xlsx"
|
76 |
+
valid_dataset="${file_dir}/valid.xlsx"
|
77 |
+
|
78 |
+
$verbose && echo "system_version: ${system_version}"
|
79 |
+
$verbose && echo "file_folder_name: ${file_folder_name}"
|
80 |
+
|
81 |
+
if [ $system_version == "windows" ]; then
|
82 |
+
alias python3='D:/Users/tianx/PycharmProjects/virtualenv/nx_denoise/Scripts/python.exe'
|
83 |
+
elif [ $system_version == "centos" ] || [ $system_version == "ubuntu" ]; then
|
84 |
+
#source /data/local/bin/nx_denoise/bin/activate
|
85 |
+
alias python3='/data/local/bin/nx_denoise/bin/python3'
|
86 |
+
fi
|
87 |
+
|
88 |
+
|
89 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
90 |
+
$verbose && echo "stage 1: prepare data"
|
91 |
+
cd "${work_dir}" || exit 1
|
92 |
+
python3 step_1_prepare_data.py \
|
93 |
+
--file_dir "${file_dir}" \
|
94 |
+
--noise_dir "${noise_dir}" \
|
95 |
+
--speech_dir "${speech_dir}" \
|
96 |
+
--train_dataset "${train_dataset}" \
|
97 |
+
--valid_dataset "${valid_dataset}" \
|
98 |
+
|
99 |
+
fi
|
100 |
+
|
101 |
+
|
102 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
103 |
+
$verbose && echo "stage 2: train model"
|
104 |
+
cd "${work_dir}" || exit 1
|
105 |
+
python3 step_2_train_model.py \
|
106 |
+
--train_dataset "${train_dataset}" \
|
107 |
+
--valid_dataset "${valid_dataset}" \
|
108 |
+
--serialization_dir "${file_dir}" \
|
109 |
+
--config_file "${config_file}" \
|
110 |
+
|
111 |
+
fi
|
112 |
+
|
113 |
+
|
114 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
115 |
+
$verbose && echo "stage 3: test model"
|
116 |
+
cd "${work_dir}" || exit 1
|
117 |
+
python3 step_3_evaluation.py \
|
118 |
+
--valid_dataset "${valid_dataset}" \
|
119 |
+
--model_dir "${file_dir}/best" \
|
120 |
+
--evaluation_audio_dir "${evaluation_audio_dir}" \
|
121 |
+
--limit "${limit}" \
|
122 |
+
|
123 |
+
fi
|
124 |
+
|
125 |
+
|
126 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
127 |
+
$verbose && echo "stage 4: export model"
|
128 |
+
cd "${work_dir}" || exit 1
|
129 |
+
python3 step_5_export_models.py \
|
130 |
+
--vocabulary_dir "${vocabulary_dir}" \
|
131 |
+
--model_dir "${file_dir}/best" \
|
132 |
+
--serialization_dir "${file_dir}" \
|
133 |
+
|
134 |
+
fi
|
135 |
+
|
136 |
+
|
137 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
138 |
+
$verbose && echo "stage 5: collect files"
|
139 |
+
cd "${work_dir}" || exit 1
|
140 |
+
|
141 |
+
mkdir -p ${final_model_dir}
|
142 |
+
|
143 |
+
cp "${file_dir}/best"/* "${final_model_dir}"
|
144 |
+
cp -r "${file_dir}/vocabulary" "${final_model_dir}"
|
145 |
+
|
146 |
+
cp "${file_dir}/evaluation.xlsx" "${final_model_dir}/evaluation.xlsx"
|
147 |
+
|
148 |
+
cp "${file_dir}/trace_model.zip" "${final_model_dir}/trace_model.zip"
|
149 |
+
cp "${file_dir}/trace_quant_model.zip" "${final_model_dir}/trace_quant_model.zip"
|
150 |
+
cp "${file_dir}/script_model.zip" "${final_model_dir}/script_model.zip"
|
151 |
+
cp "${file_dir}/script_quant_model.zip" "${final_model_dir}/script_quant_model.zip"
|
152 |
+
|
153 |
+
cd "${final_model_dir}/.." || exit 1;
|
154 |
+
|
155 |
+
if [ -e "${final_model_name}.zip" ]; then
|
156 |
+
rm -rf "${final_model_name}_backup.zip"
|
157 |
+
mv "${final_model_name}.zip" "${final_model_name}_backup.zip"
|
158 |
+
fi
|
159 |
+
|
160 |
+
zip -r "${final_model_name}.zip" "${final_model_name}"
|
161 |
+
rm -rf "${final_model_name}"
|
162 |
+
|
163 |
+
fi
|
164 |
+
|
165 |
+
|
166 |
+
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
167 |
+
$verbose && echo "stage 6: clear file_dir"
|
168 |
+
cd "${work_dir}" || exit 1
|
169 |
+
|
170 |
+
rm -rf "${file_dir}";
|
171 |
+
|
172 |
+
fi
|
examples/simple_lstm_irm_aishell/step_1_prepare_data.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from tqdm import tqdm
|
16 |
+
import librosa
|
17 |
+
|
18 |
+
from project_settings import project_path
|
19 |
+
|
20 |
+
|
21 |
+
def get_args():
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument("--file_dir", default="./", type=str)
|
24 |
+
|
25 |
+
parser.add_argument(
|
26 |
+
"--noise_dir",
|
27 |
+
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
28 |
+
type=str
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--speech_dir",
|
32 |
+
default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
|
33 |
+
type=str
|
34 |
+
)
|
35 |
+
|
36 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
37 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
38 |
+
|
39 |
+
parser.add_argument("--duration", default=2.0, type=float)
|
40 |
+
parser.add_argument("--min_nsr_db", default=-20, type=float)
|
41 |
+
parser.add_argument("--max_nsr_db", default=5, type=float)
|
42 |
+
|
43 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
44 |
+
|
45 |
+
args = parser.parse_args()
|
46 |
+
return args
|
47 |
+
|
48 |
+
|
49 |
+
def filename_generator(data_dir: str):
|
50 |
+
data_dir = Path(data_dir)
|
51 |
+
for filename in data_dir.glob("**/*.wav"):
|
52 |
+
yield filename.as_posix()
|
53 |
+
|
54 |
+
|
55 |
+
def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000):
|
56 |
+
data_dir = Path(data_dir)
|
57 |
+
for filename in data_dir.glob("**/*.wav"):
|
58 |
+
signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
|
59 |
+
raw_duration = librosa.get_duration(y=signal, sr=sample_rate)
|
60 |
+
|
61 |
+
if raw_duration < duration:
|
62 |
+
# print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
|
63 |
+
continue
|
64 |
+
if signal.ndim != 1:
|
65 |
+
raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")
|
66 |
+
|
67 |
+
signal_length = len(signal)
|
68 |
+
win_size = int(duration * sample_rate)
|
69 |
+
for begin in range(0, signal_length - win_size, win_size):
|
70 |
+
row = {
|
71 |
+
"filename": filename.as_posix(),
|
72 |
+
"raw_duration": round(raw_duration, 4),
|
73 |
+
"offset": round(begin / sample_rate, 4),
|
74 |
+
"duration": round(duration, 4),
|
75 |
+
}
|
76 |
+
yield row
|
77 |
+
|
78 |
+
|
79 |
+
def get_dataset(args):
|
80 |
+
file_dir = Path(args.file_dir)
|
81 |
+
file_dir.mkdir(exist_ok=True)
|
82 |
+
|
83 |
+
noise_dir = Path(args.noise_dir)
|
84 |
+
speech_dir = Path(args.speech_dir)
|
85 |
+
|
86 |
+
noise_generator = target_second_signal_generator(
|
87 |
+
noise_dir.as_posix(),
|
88 |
+
duration=args.duration,
|
89 |
+
sample_rate=args.target_sample_rate
|
90 |
+
)
|
91 |
+
speech_generator = target_second_signal_generator(
|
92 |
+
speech_dir.as_posix(),
|
93 |
+
duration=args.duration,
|
94 |
+
sample_rate=args.target_sample_rate
|
95 |
+
)
|
96 |
+
|
97 |
+
dataset = list()
|
98 |
+
|
99 |
+
count = 0
|
100 |
+
process_bar = tqdm(desc="build dataset excel")
|
101 |
+
for noise, speech in zip(noise_generator, speech_generator):
|
102 |
+
|
103 |
+
noise_filename = noise["filename"]
|
104 |
+
noise_raw_duration = noise["raw_duration"]
|
105 |
+
noise_offset = noise["offset"]
|
106 |
+
noise_duration = noise["duration"]
|
107 |
+
|
108 |
+
speech_filename = speech["filename"]
|
109 |
+
speech_raw_duration = speech["raw_duration"]
|
110 |
+
speech_offset = speech["offset"]
|
111 |
+
speech_duration = speech["duration"]
|
112 |
+
|
113 |
+
random1 = random.random()
|
114 |
+
random2 = random.random()
|
115 |
+
|
116 |
+
row = {
|
117 |
+
"noise_filename": noise_filename,
|
118 |
+
"noise_raw_duration": noise_raw_duration,
|
119 |
+
"noise_offset": noise_offset,
|
120 |
+
"noise_duration": noise_duration,
|
121 |
+
|
122 |
+
"speech_filename": speech_filename,
|
123 |
+
"speech_raw_duration": speech_raw_duration,
|
124 |
+
"speech_offset": speech_offset,
|
125 |
+
"speech_duration": speech_duration,
|
126 |
+
|
127 |
+
"snr_db": random.uniform(args.min_nsr_db, args.max_nsr_db),
|
128 |
+
|
129 |
+
"random1": random1,
|
130 |
+
"random2": random2,
|
131 |
+
"flag": "TRAIN" if random2 < 0.8 else "TEST",
|
132 |
+
}
|
133 |
+
dataset.append(row)
|
134 |
+
count += 1
|
135 |
+
duration_seconds = count * args.duration
|
136 |
+
duration_hours = duration_seconds / 3600
|
137 |
+
|
138 |
+
process_bar.update(n=1)
|
139 |
+
process_bar.set_postfix({
|
140 |
+
# "duration_seconds": round(duration_seconds, 4),
|
141 |
+
"duration_hours": round(duration_hours, 4),
|
142 |
+
|
143 |
+
})
|
144 |
+
|
145 |
+
dataset = pd.DataFrame(dataset)
|
146 |
+
dataset = dataset.sort_values(by=["random1"], ascending=False)
|
147 |
+
dataset.to_excel(
|
148 |
+
file_dir / "dataset.xlsx",
|
149 |
+
index=False,
|
150 |
+
)
|
151 |
+
return
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def split_dataset(args):
|
156 |
+
"""分割训练集, 测试集"""
|
157 |
+
file_dir = Path(args.file_dir)
|
158 |
+
file_dir.mkdir(exist_ok=True)
|
159 |
+
|
160 |
+
df = pd.read_excel(file_dir / "dataset.xlsx")
|
161 |
+
|
162 |
+
train = list()
|
163 |
+
test = list()
|
164 |
+
|
165 |
+
for i, row in df.iterrows():
|
166 |
+
flag = row["flag"]
|
167 |
+
if flag == "TRAIN":
|
168 |
+
train.append(row)
|
169 |
+
else:
|
170 |
+
test.append(row)
|
171 |
+
|
172 |
+
train = pd.DataFrame(train)
|
173 |
+
train.to_excel(
|
174 |
+
args.train_dataset,
|
175 |
+
index=False,
|
176 |
+
# encoding="utf_8_sig"
|
177 |
+
)
|
178 |
+
test = pd.DataFrame(test)
|
179 |
+
test.to_excel(
|
180 |
+
args.valid_dataset,
|
181 |
+
index=False,
|
182 |
+
# encoding="utf_8_sig"
|
183 |
+
)
|
184 |
+
|
185 |
+
return
|
186 |
+
|
187 |
+
|
188 |
+
def main():
|
189 |
+
args = get_args()
|
190 |
+
|
191 |
+
get_dataset(args)
|
192 |
+
split_dataset(args)
|
193 |
+
return
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
main()
|
examples/simple_lstm_irm_aishell/step_2_train_model.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/WenzheLiu-Speech/awesome-speech-enhancement
|
5 |
+
"""
|
6 |
+
import argparse
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
from logging.handlers import TimedRotatingFileHandler
|
10 |
+
import os
|
11 |
+
import platform
|
12 |
+
from pathlib import Path
|
13 |
+
import random
|
14 |
+
import sys
|
15 |
+
import shutil
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
from torch import dtype
|
19 |
+
|
20 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
21 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
from torch.utils.data.dataloader import DataLoader
|
27 |
+
import torchaudio
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
|
31 |
+
from toolbox.torchaudio.models.simple_lstm_irm.configuration_simple_lstm_irm import SimpleLstmIRMConfig
|
32 |
+
from toolbox.torchaudio.models.simple_lstm_irm.modeling_simple_lstm_irm import SimpleLstmIRMPretrainedModel
|
33 |
+
|
34 |
+
|
35 |
+
def get_args():
|
36 |
+
parser = argparse.ArgumentParser()
|
37 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
38 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
39 |
+
|
40 |
+
parser.add_argument("--max_epochs", default=100, type=int)
|
41 |
+
|
42 |
+
parser.add_argument("--batch_size", default=64, type=int)
|
43 |
+
parser.add_argument("--learning_rate", default=1e-3, type=float)
|
44 |
+
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
|
45 |
+
parser.add_argument("--patience", default=5, type=int)
|
46 |
+
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
47 |
+
parser.add_argument("--seed", default=0, type=int)
|
48 |
+
|
49 |
+
parser.add_argument("--config_file", default="config.yaml", type=str)
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
return args
|
53 |
+
|
54 |
+
|
55 |
+
def logging_config(file_dir: str):
|
56 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
57 |
+
|
58 |
+
logging.basicConfig(format=fmt,
|
59 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
60 |
+
level=logging.INFO)
|
61 |
+
file_handler = TimedRotatingFileHandler(
|
62 |
+
filename=os.path.join(file_dir, "main.log"),
|
63 |
+
encoding="utf-8",
|
64 |
+
when="D",
|
65 |
+
interval=1,
|
66 |
+
backupCount=7
|
67 |
+
)
|
68 |
+
file_handler.setLevel(logging.INFO)
|
69 |
+
file_handler.setFormatter(logging.Formatter(fmt))
|
70 |
+
logger = logging.getLogger(__name__)
|
71 |
+
logger.addHandler(file_handler)
|
72 |
+
|
73 |
+
return logger
|
74 |
+
|
75 |
+
|
76 |
+
class CollateFunction(object):
|
77 |
+
def __init__(self,
|
78 |
+
n_fft: int = 512,
|
79 |
+
win_length: int = 200,
|
80 |
+
hop_length: int = 80,
|
81 |
+
window_fn: str = "hamming",
|
82 |
+
irm_beta: float = 1.0,
|
83 |
+
epsilon: float = 1e-8,
|
84 |
+
):
|
85 |
+
self.n_fft = n_fft
|
86 |
+
self.win_length = win_length
|
87 |
+
self.hop_length = hop_length
|
88 |
+
self.window_fn = window_fn
|
89 |
+
self.irm_beta = irm_beta
|
90 |
+
self.epsilon = epsilon
|
91 |
+
|
92 |
+
self.transform = torchaudio.transforms.Spectrogram(
|
93 |
+
n_fft=self.n_fft,
|
94 |
+
win_length=self.win_length,
|
95 |
+
hop_length=self.hop_length,
|
96 |
+
power=2.0,
|
97 |
+
window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
|
98 |
+
)
|
99 |
+
|
100 |
+
def __call__(self, batch: List[dict]):
|
101 |
+
mix_spec_list = list()
|
102 |
+
speech_irm_list = list()
|
103 |
+
snr_db_list = list()
|
104 |
+
for sample in batch:
|
105 |
+
noise_wave: torch.Tensor = sample["noise_wave"]
|
106 |
+
speech_wave: torch.Tensor = sample["speech_wave"]
|
107 |
+
mix_wave: torch.Tensor = sample["mix_wave"]
|
108 |
+
snr_db: float = sample["snr_db"]
|
109 |
+
|
110 |
+
noise_spec = self.transform.forward(noise_wave)
|
111 |
+
speech_spec = self.transform.forward(speech_wave)
|
112 |
+
mix_spec = self.transform.forward(mix_wave)
|
113 |
+
|
114 |
+
# noise_irm = noise_spec / (noise_spec + speech_spec)
|
115 |
+
speech_irm = speech_spec / (noise_spec + speech_spec + self.epsilon)
|
116 |
+
speech_irm = torch.pow(speech_irm, self.irm_beta)
|
117 |
+
|
118 |
+
mix_spec_list.append(mix_spec)
|
119 |
+
speech_irm_list.append(speech_irm)
|
120 |
+
snr_db_list.append(torch.tensor(snr_db, dtype=torch.float32))
|
121 |
+
|
122 |
+
mix_spec_list = torch.stack(mix_spec_list)
|
123 |
+
speech_irm_list = torch.stack(speech_irm_list)
|
124 |
+
snr_db_list = torch.stack(snr_db_list) # shape: (batch_size,)
|
125 |
+
|
126 |
+
# assert
|
127 |
+
if torch.any(torch.isnan(mix_spec_list)):
|
128 |
+
raise AssertionError("nan in mix_spec Tensor")
|
129 |
+
if torch.any(torch.isnan(speech_irm_list)):
|
130 |
+
raise AssertionError("nan in speech_irm Tensor")
|
131 |
+
if torch.any(torch.isnan(snr_db_list)):
|
132 |
+
raise AssertionError("nan in snr_db Tensor")
|
133 |
+
|
134 |
+
return mix_spec_list, speech_irm_list, snr_db_list
|
135 |
+
|
136 |
+
|
137 |
+
collate_fn = CollateFunction()
|
138 |
+
|
139 |
+
|
140 |
+
def main():
|
141 |
+
args = get_args()
|
142 |
+
|
143 |
+
serialization_dir = Path(args.serialization_dir)
|
144 |
+
serialization_dir.mkdir(parents=True, exist_ok=True)
|
145 |
+
|
146 |
+
logger = logging_config(serialization_dir)
|
147 |
+
|
148 |
+
random.seed(args.seed)
|
149 |
+
np.random.seed(args.seed)
|
150 |
+
torch.manual_seed(args.seed)
|
151 |
+
logger.info("set seed: {}".format(args.seed))
|
152 |
+
|
153 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
154 |
+
n_gpu = torch.cuda.device_count()
|
155 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
156 |
+
|
157 |
+
# datasets
|
158 |
+
logger.info("prepare datasets")
|
159 |
+
train_dataset = DenoiseExcelDataset(
|
160 |
+
excel_file=args.train_dataset,
|
161 |
+
expected_sample_rate=8000,
|
162 |
+
max_wave_value=32768.0,
|
163 |
+
)
|
164 |
+
valid_dataset = DenoiseExcelDataset(
|
165 |
+
excel_file=args.valid_dataset,
|
166 |
+
expected_sample_rate=8000,
|
167 |
+
max_wave_value=32768.0,
|
168 |
+
)
|
169 |
+
train_data_loader = DataLoader(
|
170 |
+
dataset=train_dataset,
|
171 |
+
batch_size=args.batch_size,
|
172 |
+
shuffle=True,
|
173 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
174 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
175 |
+
collate_fn=collate_fn,
|
176 |
+
pin_memory=False,
|
177 |
+
# prefetch_factor=64,
|
178 |
+
)
|
179 |
+
valid_data_loader = DataLoader(
|
180 |
+
dataset=valid_dataset,
|
181 |
+
batch_size=args.batch_size,
|
182 |
+
shuffle=True,
|
183 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
184 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
185 |
+
collate_fn=collate_fn,
|
186 |
+
pin_memory=False,
|
187 |
+
# prefetch_factor=64,
|
188 |
+
)
|
189 |
+
|
190 |
+
# models
|
191 |
+
logger.info(f"prepare models. config_file: {args.config_file}")
|
192 |
+
config = SimpleLstmIRMConfig.from_pretrained(
|
193 |
+
pretrained_model_name_or_path=args.config_file,
|
194 |
+
# num_labels=vocabulary.get_vocab_size(namespace="labels")
|
195 |
+
)
|
196 |
+
model = SimpleLstmIRMPretrainedModel(
|
197 |
+
config=config,
|
198 |
+
)
|
199 |
+
model.to(device)
|
200 |
+
model.train()
|
201 |
+
|
202 |
+
# optimizer
|
203 |
+
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
|
204 |
+
param_optimizer = model.parameters()
|
205 |
+
optimizer = torch.optim.Adam(
|
206 |
+
param_optimizer,
|
207 |
+
lr=args.learning_rate,
|
208 |
+
)
|
209 |
+
# lr_scheduler = torch.optim.lr_scheduler.StepLR(
|
210 |
+
# optimizer,
|
211 |
+
# step_size=2000
|
212 |
+
# )
|
213 |
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
214 |
+
optimizer,
|
215 |
+
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
|
216 |
+
)
|
217 |
+
mse_loss = nn.MSELoss(
|
218 |
+
reduction="mean",
|
219 |
+
)
|
220 |
+
|
221 |
+
# training loop
|
222 |
+
logger.info("training")
|
223 |
+
|
224 |
+
training_loss = 10000000000
|
225 |
+
evaluation_loss = 10000000000
|
226 |
+
|
227 |
+
model_list = list()
|
228 |
+
best_idx_epoch = None
|
229 |
+
best_metric = None
|
230 |
+
patience_count = 0
|
231 |
+
|
232 |
+
for idx_epoch in range(args.max_epochs):
|
233 |
+
total_loss = 0.
|
234 |
+
total_examples = 0.
|
235 |
+
progress_bar = tqdm(
|
236 |
+
total=len(train_data_loader),
|
237 |
+
desc="Training; epoch: {}".format(idx_epoch),
|
238 |
+
)
|
239 |
+
|
240 |
+
for batch in train_data_loader:
|
241 |
+
mix_spec, speech_irm, snr_db = batch
|
242 |
+
mix_spec = mix_spec.to(device)
|
243 |
+
speech_irm_target = speech_irm.to(device)
|
244 |
+
snr_db_target = snr_db.to(device)
|
245 |
+
|
246 |
+
speech_irm_prediction = model.forward(mix_spec)
|
247 |
+
loss = mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
248 |
+
|
249 |
+
total_loss += loss.item()
|
250 |
+
total_examples += mix_spec.size(0)
|
251 |
+
|
252 |
+
optimizer.zero_grad()
|
253 |
+
loss.backward()
|
254 |
+
optimizer.step()
|
255 |
+
lr_scheduler.step()
|
256 |
+
|
257 |
+
training_loss = total_loss / total_examples
|
258 |
+
training_loss = round(training_loss, 4)
|
259 |
+
|
260 |
+
progress_bar.update(1)
|
261 |
+
progress_bar.set_postfix({
|
262 |
+
"training_loss": training_loss,
|
263 |
+
})
|
264 |
+
|
265 |
+
total_loss = 0.
|
266 |
+
total_examples = 0.
|
267 |
+
progress_bar = tqdm(
|
268 |
+
total=len(valid_data_loader),
|
269 |
+
desc="Evaluation; epoch: {}".format(idx_epoch),
|
270 |
+
)
|
271 |
+
for batch in valid_data_loader:
|
272 |
+
mix_spec, speech_irm, snr_db = batch
|
273 |
+
mix_spec = mix_spec.to(device)
|
274 |
+
speech_irm_target = speech_irm.to(device)
|
275 |
+
snr_db_target = snr_db.to(device)
|
276 |
+
|
277 |
+
with torch.no_grad():
|
278 |
+
speech_irm_prediction = model.forward(mix_spec)
|
279 |
+
loss = mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
280 |
+
|
281 |
+
total_loss += loss.item()
|
282 |
+
total_examples += mix_spec.size(0)
|
283 |
+
|
284 |
+
evaluation_loss = total_loss / total_examples
|
285 |
+
evaluation_loss = round(evaluation_loss, 4)
|
286 |
+
|
287 |
+
progress_bar.update(1)
|
288 |
+
progress_bar.set_postfix({
|
289 |
+
"evaluation_loss": evaluation_loss,
|
290 |
+
})
|
291 |
+
|
292 |
+
# save path
|
293 |
+
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
|
294 |
+
epoch_dir.mkdir(parents=True, exist_ok=False)
|
295 |
+
|
296 |
+
# save models
|
297 |
+
model.save_pretrained(epoch_dir.as_posix())
|
298 |
+
|
299 |
+
model_list.append(epoch_dir)
|
300 |
+
if len(model_list) >= args.num_serialized_models_to_keep:
|
301 |
+
model_to_delete: Path = model_list.pop(0)
|
302 |
+
shutil.rmtree(model_to_delete.as_posix())
|
303 |
+
|
304 |
+
# save metric
|
305 |
+
if best_metric is None:
|
306 |
+
best_idx_epoch = idx_epoch
|
307 |
+
best_metric = evaluation_loss
|
308 |
+
elif evaluation_loss < best_metric:
|
309 |
+
best_idx_epoch = idx_epoch
|
310 |
+
best_metric = evaluation_loss
|
311 |
+
else:
|
312 |
+
pass
|
313 |
+
|
314 |
+
metrics = {
|
315 |
+
"idx_epoch": idx_epoch,
|
316 |
+
"best_idx_epoch": best_idx_epoch,
|
317 |
+
"training_loss": training_loss,
|
318 |
+
"evaluation_loss": evaluation_loss,
|
319 |
+
"learning_rate": optimizer.param_groups[0]["lr"],
|
320 |
+
}
|
321 |
+
metrics_filename = epoch_dir / "metrics_epoch.json"
|
322 |
+
with open(metrics_filename, "w", encoding="utf-8") as f:
|
323 |
+
json.dump(metrics, f, indent=4, ensure_ascii=False)
|
324 |
+
|
325 |
+
# save best
|
326 |
+
best_dir = serialization_dir / "best"
|
327 |
+
if best_idx_epoch == idx_epoch:
|
328 |
+
if best_dir.exists():
|
329 |
+
shutil.rmtree(best_dir)
|
330 |
+
shutil.copytree(epoch_dir, best_dir)
|
331 |
+
|
332 |
+
# early stop
|
333 |
+
early_stop_flag = False
|
334 |
+
if best_idx_epoch == idx_epoch:
|
335 |
+
patience_count = 0
|
336 |
+
else:
|
337 |
+
patience_count += 1
|
338 |
+
if patience_count >= args.patience:
|
339 |
+
early_stop_flag = True
|
340 |
+
|
341 |
+
# early stop
|
342 |
+
if early_stop_flag:
|
343 |
+
break
|
344 |
+
return
|
345 |
+
|
346 |
+
|
347 |
+
if __name__ == '__main__':
|
348 |
+
main()
|
examples/simple_lstm_irm_aishell/step_3_evaluation.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import sys
|
8 |
+
import uuid
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import librosa
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
from scipy.io import wavfile
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torchaudio
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
from toolbox.torchaudio.models.simple_lstm_irm.modeling_simple_lstm_irm import SimpleLstmIRMPretrainedModel
|
23 |
+
|
24 |
+
|
25 |
+
def get_args():
|
26 |
+
parser = argparse.ArgumentParser()
|
27 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
28 |
+
parser.add_argument("--model_dir", default="serialization_dir/best", type=str)
|
29 |
+
parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str)
|
30 |
+
|
31 |
+
parser.add_argument("--limit", default=10, type=int)
|
32 |
+
|
33 |
+
args = parser.parse_args()
|
34 |
+
return args
|
35 |
+
|
36 |
+
|
37 |
+
def logging_config():
|
38 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
39 |
+
|
40 |
+
logging.basicConfig(format=fmt,
|
41 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
42 |
+
level=logging.INFO)
|
43 |
+
stream_handler = logging.StreamHandler()
|
44 |
+
stream_handler.setLevel(logging.INFO)
|
45 |
+
stream_handler.setFormatter(logging.Formatter(fmt))
|
46 |
+
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
|
49 |
+
return logger
|
50 |
+
|
51 |
+
|
52 |
+
def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float):
|
53 |
+
l1 = len(speech)
|
54 |
+
l2 = len(noise)
|
55 |
+
l = min(l1, l2)
|
56 |
+
speech = speech[:l]
|
57 |
+
noise = noise[:l]
|
58 |
+
|
59 |
+
# np.float32, value between (-1, 1).
|
60 |
+
|
61 |
+
speech_power = np.mean(np.square(speech))
|
62 |
+
noise_power = speech_power / (10 ** (snr_db / 10))
|
63 |
+
|
64 |
+
noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2))
|
65 |
+
|
66 |
+
noisy_signal = speech + noise_adjusted
|
67 |
+
|
68 |
+
return noisy_signal
|
69 |
+
|
70 |
+
|
71 |
+
stft_power = torchaudio.transforms.Spectrogram(
|
72 |
+
n_fft=512,
|
73 |
+
win_length=200,
|
74 |
+
hop_length=80,
|
75 |
+
power=2.0,
|
76 |
+
window_fn=torch.hamming_window,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
stft_complex = torchaudio.transforms.Spectrogram(
|
81 |
+
n_fft=512,
|
82 |
+
win_length=200,
|
83 |
+
hop_length=80,
|
84 |
+
power=None,
|
85 |
+
window_fn=torch.hamming_window,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
istft = torchaudio.transforms.InverseSpectrogram(
|
90 |
+
n_fft=512,
|
91 |
+
win_length=200,
|
92 |
+
hop_length=80,
|
93 |
+
window_fn=torch.hamming_window,
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def enhance(mix_spec_complex: torch.Tensor, speech_irm_prediction: torch.Tensor):
|
98 |
+
mix_spec_complex = mix_spec_complex.detach().cpu()
|
99 |
+
speech_irm_prediction = speech_irm_prediction.detach().cpu()
|
100 |
+
|
101 |
+
mask_speech = speech_irm_prediction
|
102 |
+
mask_noise = 1.0 - speech_irm_prediction
|
103 |
+
|
104 |
+
speech_spec = mix_spec_complex * mask_speech
|
105 |
+
noise_spec = mix_spec_complex * mask_noise
|
106 |
+
|
107 |
+
speech_wave = istft.forward(speech_spec)
|
108 |
+
noise_wave = istft.forward(noise_spec)
|
109 |
+
|
110 |
+
return speech_wave, noise_wave
|
111 |
+
|
112 |
+
|
113 |
+
def save_audios(noise_wave: torch.Tensor,
|
114 |
+
speech_wave: torch.Tensor,
|
115 |
+
mix_wave: torch.Tensor,
|
116 |
+
speech_wave_enhanced: torch.Tensor,
|
117 |
+
noise_wave_enhanced: torch.Tensor,
|
118 |
+
output_dir: str,
|
119 |
+
sample_rate: int = 8000,
|
120 |
+
):
|
121 |
+
basename = uuid.uuid4().__str__()
|
122 |
+
output_dir = Path(output_dir) / basename
|
123 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
124 |
+
|
125 |
+
filename = output_dir / "noise_wave.wav"
|
126 |
+
torchaudio.save(filename, noise_wave, sample_rate)
|
127 |
+
filename = output_dir / "speech_wave.wav"
|
128 |
+
torchaudio.save(filename, speech_wave, sample_rate)
|
129 |
+
filename = output_dir / "mix_wave.wav"
|
130 |
+
torchaudio.save(filename, mix_wave, sample_rate)
|
131 |
+
|
132 |
+
filename = output_dir / "speech_wave_enhanced.wav"
|
133 |
+
torchaudio.save(filename, speech_wave_enhanced, sample_rate)
|
134 |
+
filename = output_dir / "noise_wave_enhanced.wav"
|
135 |
+
torchaudio.save(filename, noise_wave_enhanced, sample_rate)
|
136 |
+
|
137 |
+
return output_dir.as_posix()
|
138 |
+
|
139 |
+
|
140 |
+
def main():
|
141 |
+
args = get_args()
|
142 |
+
|
143 |
+
logger = logging_config()
|
144 |
+
|
145 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
146 |
+
n_gpu = torch.cuda.device_count()
|
147 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
148 |
+
|
149 |
+
logger.info("prepare model")
|
150 |
+
model = SimpleLstmIRMPretrainedModel.from_pretrained(
|
151 |
+
pretrained_model_name_or_path=args.model_dir,
|
152 |
+
)
|
153 |
+
model.to(device)
|
154 |
+
model.eval()
|
155 |
+
|
156 |
+
# optimizer
|
157 |
+
logger.info("prepare loss_fn")
|
158 |
+
mse_loss = nn.MSELoss(
|
159 |
+
reduction="mean",
|
160 |
+
)
|
161 |
+
|
162 |
+
logger.info("read excel")
|
163 |
+
df = pd.read_excel(args.valid_dataset)
|
164 |
+
|
165 |
+
total_loss = 0.
|
166 |
+
total_examples = 0.
|
167 |
+
progress_bar = tqdm(total=len(df), desc="Evaluation")
|
168 |
+
for idx, row in df.iterrows():
|
169 |
+
noise_filename = row["noise_filename"]
|
170 |
+
noise_offset = row["noise_offset"]
|
171 |
+
noise_duration = row["noise_duration"]
|
172 |
+
|
173 |
+
speech_filename = row["speech_filename"]
|
174 |
+
speech_offset = row["speech_offset"]
|
175 |
+
speech_duration = row["speech_duration"]
|
176 |
+
|
177 |
+
snr_db = row["snr_db"]
|
178 |
+
|
179 |
+
noise_wave, _ = librosa.load(
|
180 |
+
noise_filename,
|
181 |
+
sr=8000,
|
182 |
+
offset=noise_offset,
|
183 |
+
duration=noise_duration,
|
184 |
+
)
|
185 |
+
speech_wave, _ = librosa.load(
|
186 |
+
speech_filename,
|
187 |
+
sr=8000,
|
188 |
+
offset=speech_offset,
|
189 |
+
duration=speech_duration,
|
190 |
+
)
|
191 |
+
mix_wave: np.ndarray = mix_speech_and_noise(
|
192 |
+
speech=speech_wave,
|
193 |
+
noise=noise_wave,
|
194 |
+
snr_db=snr_db,
|
195 |
+
)
|
196 |
+
noise_wave = torch.tensor(noise_wave, dtype=torch.float32)
|
197 |
+
speech_wave = torch.tensor(speech_wave, dtype=torch.float32)
|
198 |
+
mix_wave: torch.Tensor = torch.tensor(mix_wave, dtype=torch.float32)
|
199 |
+
|
200 |
+
noise_wave = noise_wave.unsqueeze(dim=0)
|
201 |
+
speech_wave = speech_wave.unsqueeze(dim=0)
|
202 |
+
mix_wave = mix_wave.unsqueeze(dim=0)
|
203 |
+
|
204 |
+
noise_spec: torch.Tensor = stft_power.forward(noise_wave)
|
205 |
+
speech_spec: torch.Tensor = stft_power.forward(speech_wave)
|
206 |
+
mix_spec: torch.Tensor = stft_power.forward(mix_wave)
|
207 |
+
mix_spec_complex: torch.Tensor = stft_complex.forward(mix_wave)
|
208 |
+
|
209 |
+
speech_irm = speech_spec / (noise_spec + speech_spec)
|
210 |
+
speech_irm = torch.pow(speech_irm, 1.0)
|
211 |
+
|
212 |
+
mix_spec = mix_spec.to(device)
|
213 |
+
speech_irm_target = speech_irm.to(device)
|
214 |
+
with torch.no_grad():
|
215 |
+
speech_irm_prediction = model.forward(mix_spec)
|
216 |
+
loss = mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
217 |
+
|
218 |
+
speech_wave_enhanced, noise_wave_enhanced = enhance(mix_spec_complex, speech_irm_prediction)
|
219 |
+
save_audios(noise_wave, speech_wave, mix_wave, speech_wave_enhanced, noise_wave_enhanced, args.evaluation_audio_dir)
|
220 |
+
|
221 |
+
total_loss += loss.item()
|
222 |
+
total_examples += mix_spec.size(0)
|
223 |
+
|
224 |
+
evaluation_loss = total_loss / total_examples
|
225 |
+
evaluation_loss = round(evaluation_loss, 4)
|
226 |
+
|
227 |
+
progress_bar.update(1)
|
228 |
+
progress_bar.set_postfix({
|
229 |
+
"evaluation_loss": evaluation_loss,
|
230 |
+
})
|
231 |
+
|
232 |
+
if idx > args.limit:
|
233 |
+
break
|
234 |
+
|
235 |
+
return
|
236 |
+
|
237 |
+
|
238 |
+
if __name__ == '__main__':
|
239 |
+
main()
|
examples/spectrum_unet_irm_aishell/run.sh
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
: <<'END'
|
4 |
+
|
5 |
+
|
6 |
+
sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name file_dir \
|
7 |
+
--noise_dir "E:/Users/tianx/HuggingDatasets/nx_noise/data/noise" \
|
8 |
+
--speech_dir "E:/programmer/asr_datasets/aishell/data_aishell/wav/train"
|
9 |
+
|
10 |
+
|
11 |
+
sh run.sh --stage 3 --stop_stage 3 --system_version centos --file_folder_name file_dir \
|
12 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
13 |
+
--speech_dir "/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train"
|
14 |
+
|
15 |
+
|
16 |
+
END
|
17 |
+
|
18 |
+
|
19 |
+
# params
|
20 |
+
system_version="windows";
|
21 |
+
verbose=true;
|
22 |
+
stage=0 # start from 0 if you need to start from data preparation
|
23 |
+
stop_stage=9
|
24 |
+
|
25 |
+
work_dir="$(pwd)"
|
26 |
+
file_folder_name=file_folder_name
|
27 |
+
final_model_name=final_model_name
|
28 |
+
config_file="yaml/config.yaml"
|
29 |
+
limit=10
|
30 |
+
|
31 |
+
noise_dir=/data/tianxing/HuggingDatasets/nx_noise/data/noise
|
32 |
+
speech_dir=/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train
|
33 |
+
|
34 |
+
nohup_name=nohup.out
|
35 |
+
|
36 |
+
# model params
|
37 |
+
batch_size=64
|
38 |
+
max_epochs=200
|
39 |
+
save_top_k=10
|
40 |
+
patience=5
|
41 |
+
|
42 |
+
|
43 |
+
# parse options
|
44 |
+
while true; do
|
45 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
46 |
+
case "$1" in
|
47 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
48 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
49 |
+
old_value="(eval echo \\$$name)";
|
50 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
51 |
+
was_bool=true;
|
52 |
+
else
|
53 |
+
was_bool=false;
|
54 |
+
fi
|
55 |
+
|
56 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
57 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
58 |
+
eval "${name}=\"$2\"";
|
59 |
+
|
60 |
+
# Check that Boolean-valued arguments are really Boolean.
|
61 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
62 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
63 |
+
exit 1;
|
64 |
+
fi
|
65 |
+
shift 2;
|
66 |
+
;;
|
67 |
+
|
68 |
+
*) break;
|
69 |
+
esac
|
70 |
+
done
|
71 |
+
|
72 |
+
file_dir="${work_dir}/${file_folder_name}"
|
73 |
+
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
74 |
+
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
75 |
+
|
76 |
+
dataset="${file_dir}/dataset.xlsx"
|
77 |
+
train_dataset="${file_dir}/train.xlsx"
|
78 |
+
valid_dataset="${file_dir}/valid.xlsx"
|
79 |
+
|
80 |
+
$verbose && echo "system_version: ${system_version}"
|
81 |
+
$verbose && echo "file_folder_name: ${file_folder_name}"
|
82 |
+
|
83 |
+
if [ $system_version == "windows" ]; then
|
84 |
+
alias python3='D:/Users/tianx/PycharmProjects/virtualenv/nx_denoise/Scripts/python.exe'
|
85 |
+
elif [ $system_version == "centos" ] || [ $system_version == "ubuntu" ]; then
|
86 |
+
#source /data/local/bin/nx_denoise/bin/activate
|
87 |
+
alias python3='/data/local/bin/nx_denoise/bin/python3'
|
88 |
+
fi
|
89 |
+
|
90 |
+
|
91 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
92 |
+
$verbose && echo "stage 1: prepare data"
|
93 |
+
cd "${work_dir}" || exit 1
|
94 |
+
python3 step_1_prepare_data.py \
|
95 |
+
--file_dir "${file_dir}" \
|
96 |
+
--noise_dir "${noise_dir}" \
|
97 |
+
--speech_dir "${speech_dir}" \
|
98 |
+
--train_dataset "${train_dataset}" \
|
99 |
+
--valid_dataset "${valid_dataset}" \
|
100 |
+
|
101 |
+
fi
|
102 |
+
|
103 |
+
|
104 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
105 |
+
$verbose && echo "stage 2: train model"
|
106 |
+
cd "${work_dir}" || exit 1
|
107 |
+
python3 step_2_train_model.py \
|
108 |
+
--train_dataset "${train_dataset}" \
|
109 |
+
--valid_dataset "${valid_dataset}" \
|
110 |
+
--serialization_dir "${file_dir}" \
|
111 |
+
--config_file "${config_file}" \
|
112 |
+
|
113 |
+
fi
|
114 |
+
|
115 |
+
|
116 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
117 |
+
$verbose && echo "stage 3: test model"
|
118 |
+
cd "${work_dir}" || exit 1
|
119 |
+
python3 step_3_evaluation.py \
|
120 |
+
--valid_dataset "${valid_dataset}" \
|
121 |
+
--model_dir "${file_dir}/best" \
|
122 |
+
--evaluation_audio_dir "${evaluation_audio_dir}" \
|
123 |
+
--limit "${limit}" \
|
124 |
+
|
125 |
+
fi
|
126 |
+
|
127 |
+
|
128 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
129 |
+
$verbose && echo "stage 4: export model"
|
130 |
+
cd "${work_dir}" || exit 1
|
131 |
+
python3 step_5_export_models.py \
|
132 |
+
--vocabulary_dir "${vocabulary_dir}" \
|
133 |
+
--model_dir "${file_dir}/best" \
|
134 |
+
--serialization_dir "${file_dir}" \
|
135 |
+
|
136 |
+
fi
|
137 |
+
|
138 |
+
|
139 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
140 |
+
$verbose && echo "stage 5: collect files"
|
141 |
+
cd "${work_dir}" || exit 1
|
142 |
+
|
143 |
+
mkdir -p ${final_model_dir}
|
144 |
+
|
145 |
+
cp "${file_dir}/best"/* "${final_model_dir}"
|
146 |
+
cp -r "${file_dir}/vocabulary" "${final_model_dir}"
|
147 |
+
|
148 |
+
cp "${file_dir}/evaluation.xlsx" "${final_model_dir}/evaluation.xlsx"
|
149 |
+
|
150 |
+
cp "${file_dir}/trace_model.zip" "${final_model_dir}/trace_model.zip"
|
151 |
+
cp "${file_dir}/trace_quant_model.zip" "${final_model_dir}/trace_quant_model.zip"
|
152 |
+
cp "${file_dir}/script_model.zip" "${final_model_dir}/script_model.zip"
|
153 |
+
cp "${file_dir}/script_quant_model.zip" "${final_model_dir}/script_quant_model.zip"
|
154 |
+
|
155 |
+
cd "${final_model_dir}/.." || exit 1;
|
156 |
+
|
157 |
+
if [ -e "${final_model_name}.zip" ]; then
|
158 |
+
rm -rf "${final_model_name}_backup.zip"
|
159 |
+
mv "${final_model_name}.zip" "${final_model_name}_backup.zip"
|
160 |
+
fi
|
161 |
+
|
162 |
+
zip -r "${final_model_name}.zip" "${final_model_name}"
|
163 |
+
rm -rf "${final_model_name}"
|
164 |
+
|
165 |
+
fi
|
166 |
+
|
167 |
+
|
168 |
+
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
169 |
+
$verbose && echo "stage 6: clear file_dir"
|
170 |
+
cd "${work_dir}" || exit 1
|
171 |
+
|
172 |
+
rm -rf "${file_dir}";
|
173 |
+
|
174 |
+
fi
|
examples/spectrum_unet_irm_aishell/step_1_prepare_data.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from tqdm import tqdm
|
16 |
+
import librosa
|
17 |
+
|
18 |
+
from project_settings import project_path
|
19 |
+
|
20 |
+
|
21 |
+
def get_args():
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument("--file_dir", default="./", type=str)
|
24 |
+
|
25 |
+
parser.add_argument(
|
26 |
+
"--noise_dir",
|
27 |
+
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
28 |
+
type=str
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--speech_dir",
|
32 |
+
default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
|
33 |
+
type=str
|
34 |
+
)
|
35 |
+
|
36 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
37 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
38 |
+
|
39 |
+
parser.add_argument("--duration", default=2.0, type=float)
|
40 |
+
parser.add_argument("--min_nsr_db", default=-20, type=float)
|
41 |
+
parser.add_argument("--max_nsr_db", default=5, type=float)
|
42 |
+
|
43 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
44 |
+
|
45 |
+
args = parser.parse_args()
|
46 |
+
return args
|
47 |
+
|
48 |
+
|
49 |
+
def filename_generator(data_dir: str):
|
50 |
+
data_dir = Path(data_dir)
|
51 |
+
for filename in data_dir.glob("**/*.wav"):
|
52 |
+
yield filename.as_posix()
|
53 |
+
|
54 |
+
|
55 |
+
def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000):
|
56 |
+
data_dir = Path(data_dir)
|
57 |
+
for filename in data_dir.glob("**/*.wav"):
|
58 |
+
signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
|
59 |
+
raw_duration = librosa.get_duration(y=signal, sr=sample_rate)
|
60 |
+
|
61 |
+
if raw_duration < duration:
|
62 |
+
# print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
|
63 |
+
continue
|
64 |
+
if signal.ndim != 1:
|
65 |
+
raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")
|
66 |
+
|
67 |
+
signal_length = len(signal)
|
68 |
+
win_size = int(duration * sample_rate)
|
69 |
+
for begin in range(0, signal_length - win_size, win_size):
|
70 |
+
row = {
|
71 |
+
"filename": filename.as_posix(),
|
72 |
+
"raw_duration": round(raw_duration, 4),
|
73 |
+
"offset": round(begin / sample_rate, 4),
|
74 |
+
"duration": round(duration, 4),
|
75 |
+
}
|
76 |
+
yield row
|
77 |
+
|
78 |
+
|
79 |
+
def get_dataset(args):
|
80 |
+
file_dir = Path(args.file_dir)
|
81 |
+
file_dir.mkdir(exist_ok=True)
|
82 |
+
|
83 |
+
noise_dir = Path(args.noise_dir)
|
84 |
+
speech_dir = Path(args.speech_dir)
|
85 |
+
|
86 |
+
noise_generator = target_second_signal_generator(
|
87 |
+
noise_dir.as_posix(),
|
88 |
+
duration=args.duration,
|
89 |
+
sample_rate=args.target_sample_rate
|
90 |
+
)
|
91 |
+
speech_generator = target_second_signal_generator(
|
92 |
+
speech_dir.as_posix(),
|
93 |
+
duration=args.duration,
|
94 |
+
sample_rate=args.target_sample_rate
|
95 |
+
)
|
96 |
+
|
97 |
+
dataset = list()
|
98 |
+
|
99 |
+
count = 0
|
100 |
+
process_bar = tqdm(desc="build dataset excel")
|
101 |
+
for noise, speech in zip(noise_generator, speech_generator):
|
102 |
+
|
103 |
+
noise_filename = noise["filename"]
|
104 |
+
noise_raw_duration = noise["raw_duration"]
|
105 |
+
noise_offset = noise["offset"]
|
106 |
+
noise_duration = noise["duration"]
|
107 |
+
|
108 |
+
speech_filename = speech["filename"]
|
109 |
+
speech_raw_duration = speech["raw_duration"]
|
110 |
+
speech_offset = speech["offset"]
|
111 |
+
speech_duration = speech["duration"]
|
112 |
+
|
113 |
+
random1 = random.random()
|
114 |
+
random2 = random.random()
|
115 |
+
|
116 |
+
row = {
|
117 |
+
"noise_filename": noise_filename,
|
118 |
+
"noise_raw_duration": noise_raw_duration,
|
119 |
+
"noise_offset": noise_offset,
|
120 |
+
"noise_duration": noise_duration,
|
121 |
+
|
122 |
+
"speech_filename": speech_filename,
|
123 |
+
"speech_raw_duration": speech_raw_duration,
|
124 |
+
"speech_offset": speech_offset,
|
125 |
+
"speech_duration": speech_duration,
|
126 |
+
|
127 |
+
"snr_db": random.uniform(args.min_nsr_db, args.max_nsr_db),
|
128 |
+
|
129 |
+
"random1": random1,
|
130 |
+
"random2": random2,
|
131 |
+
"flag": "TRAIN" if random2 < 0.8 else "TEST",
|
132 |
+
}
|
133 |
+
dataset.append(row)
|
134 |
+
count += 1
|
135 |
+
duration_seconds = count * args.duration
|
136 |
+
duration_hours = duration_seconds / 3600
|
137 |
+
|
138 |
+
process_bar.update(n=1)
|
139 |
+
process_bar.set_postfix({
|
140 |
+
# "duration_seconds": round(duration_seconds, 4),
|
141 |
+
"duration_hours": round(duration_hours, 4),
|
142 |
+
|
143 |
+
})
|
144 |
+
|
145 |
+
dataset = pd.DataFrame(dataset)
|
146 |
+
dataset = dataset.sort_values(by=["random1"], ascending=False)
|
147 |
+
dataset.to_excel(
|
148 |
+
file_dir / "dataset.xlsx",
|
149 |
+
index=False,
|
150 |
+
)
|
151 |
+
return
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def split_dataset(args):
|
156 |
+
"""分割训练集, 测试集"""
|
157 |
+
file_dir = Path(args.file_dir)
|
158 |
+
file_dir.mkdir(exist_ok=True)
|
159 |
+
|
160 |
+
df = pd.read_excel(file_dir / "dataset.xlsx")
|
161 |
+
|
162 |
+
train = list()
|
163 |
+
test = list()
|
164 |
+
|
165 |
+
for i, row in df.iterrows():
|
166 |
+
flag = row["flag"]
|
167 |
+
if flag == "TRAIN":
|
168 |
+
train.append(row)
|
169 |
+
else:
|
170 |
+
test.append(row)
|
171 |
+
|
172 |
+
train = pd.DataFrame(train)
|
173 |
+
train.to_excel(
|
174 |
+
args.train_dataset,
|
175 |
+
index=False,
|
176 |
+
# encoding="utf_8_sig"
|
177 |
+
)
|
178 |
+
test = pd.DataFrame(test)
|
179 |
+
test.to_excel(
|
180 |
+
args.valid_dataset,
|
181 |
+
index=False,
|
182 |
+
# encoding="utf_8_sig"
|
183 |
+
)
|
184 |
+
|
185 |
+
return
|
186 |
+
|
187 |
+
|
188 |
+
def main():
|
189 |
+
args = get_args()
|
190 |
+
|
191 |
+
get_dataset(args)
|
192 |
+
split_dataset(args)
|
193 |
+
return
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
main()
|
examples/spectrum_unet_irm_aishell/step_2_train_model.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/WenzheLiu-Speech/awesome-speech-enhancement
|
5 |
+
"""
|
6 |
+
import argparse
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
from logging.handlers import TimedRotatingFileHandler
|
10 |
+
import os
|
11 |
+
import platform
|
12 |
+
from pathlib import Path
|
13 |
+
import random
|
14 |
+
import sys
|
15 |
+
import shutil
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
19 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from torch.utils.data.dataloader import DataLoader
|
25 |
+
import torchaudio
|
26 |
+
from tqdm import tqdm
|
27 |
+
|
28 |
+
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
|
29 |
+
from toolbox.torchaudio.models.spectrum_unet_irm.configuration_specturm_unet_irm import SpectrumUnetIRMConfig
|
30 |
+
from toolbox.torchaudio.models.spectrum_unet_irm.modeling_spectrum_unet_irm import SpectrumUnetIRMPretrainedModel
|
31 |
+
|
32 |
+
|
33 |
+
def get_args():
|
34 |
+
parser = argparse.ArgumentParser()
|
35 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
36 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
37 |
+
|
38 |
+
parser.add_argument("--max_epochs", default=100, type=int)
|
39 |
+
|
40 |
+
parser.add_argument("--batch_size", default=64, type=int)
|
41 |
+
parser.add_argument("--learning_rate", default=1e-3, type=float)
|
42 |
+
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
|
43 |
+
parser.add_argument("--patience", default=5, type=int)
|
44 |
+
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
45 |
+
parser.add_argument("--seed", default=0, type=int)
|
46 |
+
|
47 |
+
parser.add_argument("--config_file", default="config.yaml", type=str)
|
48 |
+
|
49 |
+
args = parser.parse_args()
|
50 |
+
return args
|
51 |
+
|
52 |
+
|
53 |
+
def logging_config(file_dir: str):
|
54 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
55 |
+
|
56 |
+
logging.basicConfig(format=fmt,
|
57 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
58 |
+
level=logging.INFO)
|
59 |
+
file_handler = TimedRotatingFileHandler(
|
60 |
+
filename=os.path.join(file_dir, "main.log"),
|
61 |
+
encoding="utf-8",
|
62 |
+
when="D",
|
63 |
+
interval=1,
|
64 |
+
backupCount=7
|
65 |
+
)
|
66 |
+
file_handler.setLevel(logging.INFO)
|
67 |
+
file_handler.setFormatter(logging.Formatter(fmt))
|
68 |
+
logger = logging.getLogger(__name__)
|
69 |
+
logger.addHandler(file_handler)
|
70 |
+
|
71 |
+
return logger
|
72 |
+
|
73 |
+
|
74 |
+
class CollateFunction(object):
|
75 |
+
def __init__(self,
|
76 |
+
n_fft: int = 512,
|
77 |
+
win_length: int = 200,
|
78 |
+
hop_length: int = 80,
|
79 |
+
window_fn: str = "hamming",
|
80 |
+
irm_beta: float = 1.0,
|
81 |
+
epsilon: float = 1e-8,
|
82 |
+
):
|
83 |
+
self.n_fft = n_fft
|
84 |
+
self.win_length = win_length
|
85 |
+
self.hop_length = hop_length
|
86 |
+
self.window_fn = window_fn
|
87 |
+
self.irm_beta = irm_beta
|
88 |
+
self.epsilon = epsilon
|
89 |
+
|
90 |
+
self.transform = torchaudio.transforms.Spectrogram(
|
91 |
+
n_fft=self.n_fft,
|
92 |
+
win_length=self.win_length,
|
93 |
+
hop_length=self.hop_length,
|
94 |
+
power=2.0,
|
95 |
+
window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
|
96 |
+
)
|
97 |
+
|
98 |
+
def __call__(self, batch: List[dict]):
|
99 |
+
mix_spec_list = list()
|
100 |
+
speech_irm_list = list()
|
101 |
+
snr_db_list = list()
|
102 |
+
for sample in batch:
|
103 |
+
noise_wave: torch.Tensor = sample["noise_wave"]
|
104 |
+
speech_wave: torch.Tensor = sample["speech_wave"]
|
105 |
+
mix_wave: torch.Tensor = sample["mix_wave"]
|
106 |
+
# snr_db: float = sample["snr_db"]
|
107 |
+
|
108 |
+
noise_spec = self.transform.forward(noise_wave)
|
109 |
+
speech_spec = self.transform.forward(speech_wave)
|
110 |
+
mix_spec = self.transform.forward(mix_wave)
|
111 |
+
|
112 |
+
# noise_irm = noise_spec / (noise_spec + speech_spec)
|
113 |
+
speech_irm = speech_spec / (noise_spec + speech_spec + self.epsilon)
|
114 |
+
speech_irm = torch.pow(speech_irm, self.irm_beta)
|
115 |
+
|
116 |
+
# noise_spec, speech_spec, mix_spec, speech_irm
|
117 |
+
# shape: [freq_dim, time_steps]
|
118 |
+
|
119 |
+
snr_db: torch.Tensor = 10 * torch.log10(
|
120 |
+
speech_spec / (noise_spec + self.epsilon)
|
121 |
+
)
|
122 |
+
snr_db = torch.mean(snr_db, dim=0, keepdim=True)
|
123 |
+
# snr_db shape: [1, time_steps]
|
124 |
+
|
125 |
+
mix_spec_list.append(mix_spec)
|
126 |
+
speech_irm_list.append(speech_irm)
|
127 |
+
snr_db_list.append(snr_db)
|
128 |
+
|
129 |
+
mix_spec_list = torch.stack(mix_spec_list)
|
130 |
+
speech_irm_list = torch.stack(speech_irm_list)
|
131 |
+
snr_db_list = torch.stack(snr_db_list) # shape: (batch_size, time_steps, 1)
|
132 |
+
|
133 |
+
mix_spec_list = mix_spec_list[:, :-1, :]
|
134 |
+
speech_irm_list = speech_irm_list[:, :-1, :]
|
135 |
+
|
136 |
+
# mix_spec_list shape: [batch_size, freq_dim, time_steps]
|
137 |
+
# speech_irm_list shape: [batch_size, freq_dim, time_steps]
|
138 |
+
# snr_db shape: [batch_size, 1, time_steps]
|
139 |
+
|
140 |
+
# assert
|
141 |
+
if torch.any(torch.isnan(mix_spec_list)):
|
142 |
+
raise AssertionError("nan in mix_spec Tensor")
|
143 |
+
if torch.any(torch.isnan(speech_irm_list)):
|
144 |
+
raise AssertionError("nan in speech_irm Tensor")
|
145 |
+
if torch.any(torch.isnan(snr_db_list)):
|
146 |
+
raise AssertionError("nan in snr_db Tensor")
|
147 |
+
|
148 |
+
return mix_spec_list, speech_irm_list, snr_db_list
|
149 |
+
|
150 |
+
|
151 |
+
collate_fn = CollateFunction()
|
152 |
+
|
153 |
+
|
154 |
+
def main():
|
155 |
+
args = get_args()
|
156 |
+
|
157 |
+
serialization_dir = Path(args.serialization_dir)
|
158 |
+
serialization_dir.mkdir(parents=True, exist_ok=True)
|
159 |
+
|
160 |
+
logger = logging_config(serialization_dir)
|
161 |
+
|
162 |
+
random.seed(args.seed)
|
163 |
+
np.random.seed(args.seed)
|
164 |
+
torch.manual_seed(args.seed)
|
165 |
+
logger.info("set seed: {}".format(args.seed))
|
166 |
+
|
167 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
168 |
+
n_gpu = torch.cuda.device_count()
|
169 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
170 |
+
|
171 |
+
# datasets
|
172 |
+
logger.info("prepare datasets")
|
173 |
+
train_dataset = DenoiseExcelDataset(
|
174 |
+
excel_file=args.train_dataset,
|
175 |
+
expected_sample_rate=8000,
|
176 |
+
max_wave_value=32768.0,
|
177 |
+
)
|
178 |
+
valid_dataset = DenoiseExcelDataset(
|
179 |
+
excel_file=args.valid_dataset,
|
180 |
+
expected_sample_rate=8000,
|
181 |
+
max_wave_value=32768.0,
|
182 |
+
)
|
183 |
+
train_data_loader = DataLoader(
|
184 |
+
dataset=train_dataset,
|
185 |
+
batch_size=args.batch_size,
|
186 |
+
shuffle=True,
|
187 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
188 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
189 |
+
collate_fn=collate_fn,
|
190 |
+
pin_memory=False,
|
191 |
+
# prefetch_factor=64,
|
192 |
+
)
|
193 |
+
valid_data_loader = DataLoader(
|
194 |
+
dataset=valid_dataset,
|
195 |
+
batch_size=args.batch_size,
|
196 |
+
shuffle=True,
|
197 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
198 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
199 |
+
collate_fn=collate_fn,
|
200 |
+
pin_memory=False,
|
201 |
+
# prefetch_factor=64,
|
202 |
+
)
|
203 |
+
|
204 |
+
# models
|
205 |
+
logger.info(f"prepare models. config_file: {args.config_file}")
|
206 |
+
config = SpectrumUnetIRMConfig.from_pretrained(
|
207 |
+
pretrained_model_name_or_path=args.config_file,
|
208 |
+
# num_labels=vocabulary.get_vocab_size(namespace="labels")
|
209 |
+
)
|
210 |
+
model = SpectrumUnetIRMPretrainedModel(
|
211 |
+
config=config,
|
212 |
+
)
|
213 |
+
model.to(device)
|
214 |
+
model.train()
|
215 |
+
|
216 |
+
# optimizer
|
217 |
+
logger.info("prepare optimizer, lr_scheduler, loss_fn, categorical_accuracy")
|
218 |
+
param_optimizer = model.parameters()
|
219 |
+
optimizer = torch.optim.Adam(
|
220 |
+
param_optimizer,
|
221 |
+
lr=args.learning_rate,
|
222 |
+
)
|
223 |
+
# lr_scheduler = torch.optim.lr_scheduler.StepLR(
|
224 |
+
# optimizer,
|
225 |
+
# step_size=2000
|
226 |
+
# )
|
227 |
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
228 |
+
optimizer,
|
229 |
+
milestones=[10000, 20000, 30000, 40000, 50000], gamma=0.5
|
230 |
+
)
|
231 |
+
irm_mse_loss = nn.MSELoss(
|
232 |
+
reduction="mean",
|
233 |
+
)
|
234 |
+
snr_mse_loss = nn.MSELoss(
|
235 |
+
reduction="mean",
|
236 |
+
)
|
237 |
+
|
238 |
+
# training loop
|
239 |
+
logger.info("training")
|
240 |
+
|
241 |
+
training_loss = 10000000000
|
242 |
+
evaluation_loss = 10000000000
|
243 |
+
|
244 |
+
model_list = list()
|
245 |
+
best_idx_epoch = None
|
246 |
+
best_metric = None
|
247 |
+
patience_count = 0
|
248 |
+
|
249 |
+
for idx_epoch in range(args.max_epochs):
|
250 |
+
total_loss = 0.
|
251 |
+
total_examples = 0.
|
252 |
+
progress_bar = tqdm(
|
253 |
+
total=len(train_data_loader),
|
254 |
+
desc="Training; epoch: {}".format(idx_epoch),
|
255 |
+
)
|
256 |
+
|
257 |
+
for batch in train_data_loader:
|
258 |
+
mix_spec, speech_irm, snr_db = batch
|
259 |
+
mix_spec = mix_spec.to(device)
|
260 |
+
speech_irm_target = speech_irm.to(device)
|
261 |
+
snr_db_target = snr_db.to(device)
|
262 |
+
|
263 |
+
speech_irm_prediction, lsnr_prediction = model.forward(mix_spec)
|
264 |
+
irm_loss = irm_mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
265 |
+
# snr_loss = snr_mse_loss.forward(lsnr_prediction, snr_db_target)
|
266 |
+
# loss = irm_loss + 0.1 * snr_loss
|
267 |
+
loss = irm_loss
|
268 |
+
|
269 |
+
total_loss += loss.item()
|
270 |
+
total_examples += mix_spec.size(0)
|
271 |
+
|
272 |
+
optimizer.zero_grad()
|
273 |
+
loss.backward()
|
274 |
+
optimizer.step()
|
275 |
+
lr_scheduler.step()
|
276 |
+
|
277 |
+
training_loss = total_loss / total_examples
|
278 |
+
training_loss = round(training_loss, 4)
|
279 |
+
|
280 |
+
progress_bar.update(1)
|
281 |
+
progress_bar.set_postfix({
|
282 |
+
"training_loss": training_loss,
|
283 |
+
})
|
284 |
+
|
285 |
+
total_loss = 0.
|
286 |
+
total_examples = 0.
|
287 |
+
progress_bar = tqdm(
|
288 |
+
total=len(valid_data_loader),
|
289 |
+
desc="Evaluation; epoch: {}".format(idx_epoch),
|
290 |
+
)
|
291 |
+
for batch in valid_data_loader:
|
292 |
+
mix_spec, speech_irm, snr_db = batch
|
293 |
+
mix_spec = mix_spec.to(device)
|
294 |
+
speech_irm_target = speech_irm.to(device)
|
295 |
+
snr_db_target = snr_db.to(device)
|
296 |
+
|
297 |
+
with torch.no_grad():
|
298 |
+
speech_irm_prediction, lsnr_prediction = model.forward(mix_spec)
|
299 |
+
irm_loss = irm_mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
300 |
+
# snr_loss = snr_mse_loss.forward(lsnr_prediction, snr_db_target)
|
301 |
+
# loss = irm_loss + 0.1 * snr_loss
|
302 |
+
loss = irm_loss
|
303 |
+
|
304 |
+
total_loss += loss.item()
|
305 |
+
total_examples += mix_spec.size(0)
|
306 |
+
|
307 |
+
evaluation_loss = total_loss / total_examples
|
308 |
+
evaluation_loss = round(evaluation_loss, 4)
|
309 |
+
|
310 |
+
progress_bar.update(1)
|
311 |
+
progress_bar.set_postfix({
|
312 |
+
"evaluation_loss": evaluation_loss,
|
313 |
+
})
|
314 |
+
|
315 |
+
# save path
|
316 |
+
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
|
317 |
+
epoch_dir.mkdir(parents=True, exist_ok=False)
|
318 |
+
|
319 |
+
# save models
|
320 |
+
model.save_pretrained(epoch_dir.as_posix())
|
321 |
+
|
322 |
+
model_list.append(epoch_dir)
|
323 |
+
if len(model_list) >= args.num_serialized_models_to_keep:
|
324 |
+
model_to_delete: Path = model_list.pop(0)
|
325 |
+
shutil.rmtree(model_to_delete.as_posix())
|
326 |
+
|
327 |
+
# save metric
|
328 |
+
if best_metric is None:
|
329 |
+
best_idx_epoch = idx_epoch
|
330 |
+
best_metric = evaluation_loss
|
331 |
+
elif evaluation_loss < best_metric:
|
332 |
+
best_idx_epoch = idx_epoch
|
333 |
+
best_metric = evaluation_loss
|
334 |
+
else:
|
335 |
+
pass
|
336 |
+
|
337 |
+
metrics = {
|
338 |
+
"idx_epoch": idx_epoch,
|
339 |
+
"best_idx_epoch": best_idx_epoch,
|
340 |
+
"training_loss": training_loss,
|
341 |
+
"evaluation_loss": evaluation_loss,
|
342 |
+
"learning_rate": optimizer.param_groups[0]["lr"],
|
343 |
+
}
|
344 |
+
metrics_filename = epoch_dir / "metrics_epoch.json"
|
345 |
+
with open(metrics_filename, "w", encoding="utf-8") as f:
|
346 |
+
json.dump(metrics, f, indent=4, ensure_ascii=False)
|
347 |
+
|
348 |
+
# save best
|
349 |
+
best_dir = serialization_dir / "best"
|
350 |
+
if best_idx_epoch == idx_epoch:
|
351 |
+
if best_dir.exists():
|
352 |
+
shutil.rmtree(best_dir)
|
353 |
+
shutil.copytree(epoch_dir, best_dir)
|
354 |
+
|
355 |
+
# early stop
|
356 |
+
early_stop_flag = False
|
357 |
+
if best_idx_epoch == idx_epoch:
|
358 |
+
patience_count = 0
|
359 |
+
else:
|
360 |
+
patience_count += 1
|
361 |
+
if patience_count >= args.patience:
|
362 |
+
early_stop_flag = True
|
363 |
+
|
364 |
+
# early stop
|
365 |
+
if early_stop_flag:
|
366 |
+
break
|
367 |
+
return
|
368 |
+
|
369 |
+
|
370 |
+
if __name__ == '__main__':
|
371 |
+
main()
|
examples/spectrum_unet_irm_aishell/step_3_evaluation.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import sys
|
8 |
+
import uuid
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import librosa
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
from scipy.io import wavfile
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torchaudio
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
from toolbox.torchaudio.models.spectrum_unet_irm.modeling_spectrum_unet_irm import SpectrumUnetIRMPretrainedModel
|
23 |
+
|
24 |
+
|
25 |
+
def get_args():
|
26 |
+
parser = argparse.ArgumentParser()
|
27 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
28 |
+
parser.add_argument("--model_dir", default="serialization_dir/best", type=str)
|
29 |
+
parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str)
|
30 |
+
|
31 |
+
parser.add_argument("--limit", default=10, type=int)
|
32 |
+
|
33 |
+
args = parser.parse_args()
|
34 |
+
return args
|
35 |
+
|
36 |
+
|
37 |
+
def logging_config():
|
38 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
39 |
+
|
40 |
+
logging.basicConfig(format=fmt,
|
41 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
42 |
+
level=logging.INFO)
|
43 |
+
stream_handler = logging.StreamHandler()
|
44 |
+
stream_handler.setLevel(logging.INFO)
|
45 |
+
stream_handler.setFormatter(logging.Formatter(fmt))
|
46 |
+
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
|
49 |
+
return logger
|
50 |
+
|
51 |
+
|
52 |
+
def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float):
|
53 |
+
l1 = len(speech)
|
54 |
+
l2 = len(noise)
|
55 |
+
l = min(l1, l2)
|
56 |
+
speech = speech[:l]
|
57 |
+
noise = noise[:l]
|
58 |
+
|
59 |
+
# np.float32, value between (-1, 1).
|
60 |
+
|
61 |
+
speech_power = np.mean(np.square(speech))
|
62 |
+
noise_power = speech_power / (10 ** (snr_db / 10))
|
63 |
+
|
64 |
+
noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2))
|
65 |
+
|
66 |
+
noisy_signal = speech + noise_adjusted
|
67 |
+
|
68 |
+
return noisy_signal
|
69 |
+
|
70 |
+
|
71 |
+
stft_power = torchaudio.transforms.Spectrogram(
|
72 |
+
n_fft=512,
|
73 |
+
win_length=200,
|
74 |
+
hop_length=80,
|
75 |
+
power=2.0,
|
76 |
+
window_fn=torch.hamming_window,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
stft_complex = torchaudio.transforms.Spectrogram(
|
81 |
+
n_fft=512,
|
82 |
+
win_length=200,
|
83 |
+
hop_length=80,
|
84 |
+
power=None,
|
85 |
+
window_fn=torch.hamming_window,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
istft = torchaudio.transforms.InverseSpectrogram(
|
90 |
+
n_fft=512,
|
91 |
+
win_length=200,
|
92 |
+
hop_length=80,
|
93 |
+
window_fn=torch.hamming_window,
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def enhance(mix_spec_complex: torch.Tensor, speech_irm_prediction: torch.Tensor):
|
98 |
+
mix_spec_complex = mix_spec_complex.detach().cpu()
|
99 |
+
speech_irm_prediction = speech_irm_prediction.detach().cpu()
|
100 |
+
|
101 |
+
mask_speech = speech_irm_prediction
|
102 |
+
mask_noise = 1.0 - speech_irm_prediction
|
103 |
+
|
104 |
+
speech_spec = mix_spec_complex * mask_speech
|
105 |
+
noise_spec = mix_spec_complex * mask_noise
|
106 |
+
|
107 |
+
speech_wave = istft.forward(speech_spec)
|
108 |
+
noise_wave = istft.forward(noise_spec)
|
109 |
+
|
110 |
+
return speech_wave, noise_wave
|
111 |
+
|
112 |
+
|
113 |
+
def save_audios(noise_wave: torch.Tensor,
|
114 |
+
speech_wave: torch.Tensor,
|
115 |
+
mix_wave: torch.Tensor,
|
116 |
+
speech_wave_enhanced: torch.Tensor,
|
117 |
+
noise_wave_enhanced: torch.Tensor,
|
118 |
+
output_dir: str,
|
119 |
+
sample_rate: int = 8000,
|
120 |
+
):
|
121 |
+
basename = uuid.uuid4().__str__()
|
122 |
+
output_dir = Path(output_dir) / basename
|
123 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
124 |
+
|
125 |
+
filename = output_dir / "noise_wave.wav"
|
126 |
+
torchaudio.save(filename, noise_wave, sample_rate)
|
127 |
+
filename = output_dir / "speech_wave.wav"
|
128 |
+
torchaudio.save(filename, speech_wave, sample_rate)
|
129 |
+
filename = output_dir / "mix_wave.wav"
|
130 |
+
torchaudio.save(filename, mix_wave, sample_rate)
|
131 |
+
|
132 |
+
filename = output_dir / "speech_wave_enhanced.wav"
|
133 |
+
torchaudio.save(filename, speech_wave_enhanced, sample_rate)
|
134 |
+
filename = output_dir / "noise_wave_enhanced.wav"
|
135 |
+
torchaudio.save(filename, noise_wave_enhanced, sample_rate)
|
136 |
+
|
137 |
+
return output_dir.as_posix()
|
138 |
+
|
139 |
+
|
140 |
+
def main():
|
141 |
+
args = get_args()
|
142 |
+
|
143 |
+
logger = logging_config()
|
144 |
+
|
145 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
146 |
+
n_gpu = torch.cuda.device_count()
|
147 |
+
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
|
148 |
+
|
149 |
+
logger.info("prepare model")
|
150 |
+
model = SpectrumUnetIRMPretrainedModel.from_pretrained(
|
151 |
+
pretrained_model_name_or_path=args.model_dir,
|
152 |
+
)
|
153 |
+
model.to(device)
|
154 |
+
model.eval()
|
155 |
+
|
156 |
+
# optimizer
|
157 |
+
logger.info("prepare loss_fn")
|
158 |
+
irm_mse_loss = nn.MSELoss(
|
159 |
+
reduction="mean",
|
160 |
+
)
|
161 |
+
snr_mse_loss = nn.MSELoss(
|
162 |
+
reduction="mean",
|
163 |
+
)
|
164 |
+
|
165 |
+
logger.info("read excel")
|
166 |
+
df = pd.read_excel(args.valid_dataset)
|
167 |
+
|
168 |
+
total_loss = 0.
|
169 |
+
total_examples = 0.
|
170 |
+
progress_bar = tqdm(total=len(df), desc="Evaluation")
|
171 |
+
for idx, row in df.iterrows():
|
172 |
+
noise_filename = row["noise_filename"]
|
173 |
+
noise_offset = row["noise_offset"]
|
174 |
+
noise_duration = row["noise_duration"]
|
175 |
+
|
176 |
+
speech_filename = row["speech_filename"]
|
177 |
+
speech_offset = row["speech_offset"]
|
178 |
+
speech_duration = row["speech_duration"]
|
179 |
+
|
180 |
+
snr_db = row["snr_db"]
|
181 |
+
|
182 |
+
noise_wave, _ = librosa.load(
|
183 |
+
noise_filename,
|
184 |
+
sr=8000,
|
185 |
+
offset=noise_offset,
|
186 |
+
duration=noise_duration,
|
187 |
+
)
|
188 |
+
speech_wave, _ = librosa.load(
|
189 |
+
speech_filename,
|
190 |
+
sr=8000,
|
191 |
+
offset=speech_offset,
|
192 |
+
duration=speech_duration,
|
193 |
+
)
|
194 |
+
mix_wave: np.ndarray = mix_speech_and_noise(
|
195 |
+
speech=speech_wave,
|
196 |
+
noise=noise_wave,
|
197 |
+
snr_db=snr_db,
|
198 |
+
)
|
199 |
+
noise_wave = torch.tensor(noise_wave, dtype=torch.float32)
|
200 |
+
speech_wave = torch.tensor(speech_wave, dtype=torch.float32)
|
201 |
+
mix_wave: torch.Tensor = torch.tensor(mix_wave, dtype=torch.float32)
|
202 |
+
|
203 |
+
noise_wave = noise_wave.unsqueeze(dim=0)
|
204 |
+
speech_wave = speech_wave.unsqueeze(dim=0)
|
205 |
+
mix_wave = mix_wave.unsqueeze(dim=0)
|
206 |
+
|
207 |
+
noise_spec: torch.Tensor = stft_power.forward(noise_wave)
|
208 |
+
speech_spec: torch.Tensor = stft_power.forward(speech_wave)
|
209 |
+
mix_spec: torch.Tensor = stft_power.forward(mix_wave)
|
210 |
+
|
211 |
+
noise_spec = noise_spec[:, :-1, :]
|
212 |
+
speech_spec = speech_spec[:, :-1, :]
|
213 |
+
mix_spec = mix_spec[:, :-1, :]
|
214 |
+
|
215 |
+
mix_spec_complex: torch.Tensor = stft_complex.forward(mix_wave)
|
216 |
+
# mix_spec_complex shape: [batch_size, freq_dim (257), time_steps, 2]
|
217 |
+
|
218 |
+
speech_irm = speech_spec / (noise_spec + speech_spec)
|
219 |
+
speech_irm = torch.pow(speech_irm, 1.0)
|
220 |
+
|
221 |
+
snr_db: torch.Tensor = 10 * torch.log10(
|
222 |
+
speech_spec / (noise_spec + 1e-8)
|
223 |
+
)
|
224 |
+
snr_db = torch.mean(snr_db, dim=1, keepdim=True)
|
225 |
+
# snr_db shape: [batch_size, 1, time_steps]
|
226 |
+
|
227 |
+
mix_spec = mix_spec.to(device)
|
228 |
+
speech_irm_target = speech_irm.to(device)
|
229 |
+
snr_db_target = snr_db.to(device)
|
230 |
+
|
231 |
+
with torch.no_grad():
|
232 |
+
speech_irm_prediction, lsnr_prediction = model.forward(mix_spec)
|
233 |
+
irm_loss = irm_mse_loss.forward(speech_irm_prediction, speech_irm_target)
|
234 |
+
# snr_loss = snr_mse_loss.forward(lsnr_prediction, snr_db_target)
|
235 |
+
# loss = irm_loss + 0.1 * snr_loss
|
236 |
+
loss = irm_loss
|
237 |
+
|
238 |
+
# mix_spec_complex shape: [batch_size, freq_dim (257), time_steps, 2]
|
239 |
+
# speech_irm_prediction shape: [batch_size, freq_dim (256), time_steps]
|
240 |
+
batch_size, _, time_steps = speech_irm_prediction.shape
|
241 |
+
speech_irm_prediction = torch.concat(
|
242 |
+
[
|
243 |
+
speech_irm_prediction,
|
244 |
+
0.5*torch.ones(size=(batch_size, 1, time_steps), dtype=speech_irm_prediction.dtype).to(device)
|
245 |
+
],
|
246 |
+
dim=1,
|
247 |
+
)
|
248 |
+
# speech_irm_prediction shape: [batch_size, freq_dim (257), time_steps]
|
249 |
+
speech_wave_enhanced, noise_wave_enhanced = enhance(mix_spec_complex, speech_irm_prediction)
|
250 |
+
save_audios(noise_wave, speech_wave, mix_wave, speech_wave_enhanced, noise_wave_enhanced, args.evaluation_audio_dir)
|
251 |
+
|
252 |
+
total_loss += loss.item()
|
253 |
+
total_examples += mix_spec.size(0)
|
254 |
+
|
255 |
+
evaluation_loss = total_loss / total_examples
|
256 |
+
evaluation_loss = round(evaluation_loss, 4)
|
257 |
+
|
258 |
+
progress_bar.update(1)
|
259 |
+
progress_bar.set_postfix({
|
260 |
+
"evaluation_loss": evaluation_loss,
|
261 |
+
})
|
262 |
+
|
263 |
+
if idx > args.limit:
|
264 |
+
break
|
265 |
+
|
266 |
+
return
|
267 |
+
|
268 |
+
|
269 |
+
if __name__ == '__main__':
|
270 |
+
main()
|
examples/spectrum_unet_irm_aishell/yaml/config.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "spectrum_unet_irm"
|
2 |
+
|
3 |
+
# spec
|
4 |
+
sample_rate: 8000
|
5 |
+
n_fft: 512
|
6 |
+
win_length: 200
|
7 |
+
hop_length: 80
|
8 |
+
|
9 |
+
spec_bins: 256
|
10 |
+
|
11 |
+
# model
|
12 |
+
conv_channels: 64
|
13 |
+
conv_kernel_size_input:
|
14 |
+
- 3
|
15 |
+
- 3
|
16 |
+
conv_kernel_size_inner:
|
17 |
+
- 1
|
18 |
+
- 3
|
19 |
+
conv_lookahead: 0
|
20 |
+
|
21 |
+
convt_kernel_size_inner:
|
22 |
+
- 1
|
23 |
+
- 3
|
24 |
+
|
25 |
+
encoder_emb_skip_op: "none"
|
26 |
+
encoder_emb_linear_groups: 16
|
27 |
+
encoder_emb_hidden_size: 256
|
28 |
+
|
29 |
+
lsnr_max: 20
|
30 |
+
lsnr_min: -10
|
31 |
+
|
32 |
+
decoder_emb_num_layers: 3
|
33 |
+
decoder_emb_skip_op: "none"
|
34 |
+
decoder_emb_linear_groups: 16
|
35 |
+
decoder_emb_hidden_size: 256
|
install.sh
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
# bash install.sh --stage 2 --stop_stage 2 --system_version centos
|
4 |
+
|
5 |
+
|
6 |
+
python_version=3.8.10
|
7 |
+
system_version="centos";
|
8 |
+
|
9 |
+
verbose=true;
|
10 |
+
stage=-1
|
11 |
+
stop_stage=0
|
12 |
+
|
13 |
+
|
14 |
+
# parse options
|
15 |
+
while true; do
|
16 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
17 |
+
case "$1" in
|
18 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
19 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
20 |
+
old_value="(eval echo \\$$name)";
|
21 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
22 |
+
was_bool=true;
|
23 |
+
else
|
24 |
+
was_bool=false;
|
25 |
+
fi
|
26 |
+
|
27 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
28 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
29 |
+
eval "${name}=\"$2\"";
|
30 |
+
|
31 |
+
# Check that Boolean-valued arguments are really Boolean.
|
32 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
33 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
34 |
+
exit 1;
|
35 |
+
fi
|
36 |
+
shift 2;
|
37 |
+
;;
|
38 |
+
|
39 |
+
*) break;
|
40 |
+
esac
|
41 |
+
done
|
42 |
+
|
43 |
+
work_dir="$(pwd)"
|
44 |
+
|
45 |
+
|
46 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
47 |
+
$verbose && echo "stage 1: install python"
|
48 |
+
cd "${work_dir}" || exit 1;
|
49 |
+
|
50 |
+
sh ./script/install_python.sh --python_version "${python_version}" --system_version "${system_version}"
|
51 |
+
fi
|
52 |
+
|
53 |
+
|
54 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
55 |
+
$verbose && echo "stage 2: create virtualenv"
|
56 |
+
|
57 |
+
# /usr/local/python-3.9.9/bin/virtualenv nx_denoise
|
58 |
+
# source /data/local/bin/nx_denoise/bin/activate
|
59 |
+
/usr/local/python-${python_version}/bin/pip3 install virtualenv
|
60 |
+
mkdir -p /data/local/bin
|
61 |
+
cd /data/local/bin || exit 1;
|
62 |
+
/usr/local/python-${python_version}/bin/virtualenv nx_denoise
|
63 |
+
|
64 |
+
fi
|
main.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import platform
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from project_settings import environment, project_path
|
9 |
+
|
10 |
+
|
11 |
+
def get_args():
|
12 |
+
parser = argparse.ArgumentParser()
|
13 |
+
parser.add_argument(
|
14 |
+
"--hf_token",
|
15 |
+
default=environment.get("hf_token"),
|
16 |
+
type=str,
|
17 |
+
)
|
18 |
+
parser.add_argument(
|
19 |
+
"--server_port",
|
20 |
+
default=environment.get("server_port", 7860),
|
21 |
+
type=int
|
22 |
+
)
|
23 |
+
|
24 |
+
args = parser.parse_args()
|
25 |
+
return args
|
26 |
+
|
27 |
+
|
28 |
+
def main():
|
29 |
+
args = get_args()
|
30 |
+
|
31 |
+
# ui
|
32 |
+
with gr.Blocks() as blocks:
|
33 |
+
gr.Markdown(value="in progress.")
|
34 |
+
|
35 |
+
# http://127.0.0.1:7864/
|
36 |
+
blocks.queue().launch(
|
37 |
+
share=False if platform.system() == "Windows" else False,
|
38 |
+
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
|
39 |
+
server_port=args.server_port
|
40 |
+
)
|
41 |
+
return
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
main()
|
project_settings.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
from toolbox.os.environment import EnvironmentManager
|
7 |
+
|
8 |
+
|
9 |
+
project_path = os.path.abspath(os.path.dirname(__file__))
|
10 |
+
project_path = Path(project_path)
|
11 |
+
|
12 |
+
log_directory = project_path / "logs"
|
13 |
+
log_directory.mkdir(parents=True, exist_ok=True)
|
14 |
+
|
15 |
+
temp_directory = project_path / "temp"
|
16 |
+
temp_directory.mkdir(parents=True, exist_ok=True)
|
17 |
+
|
18 |
+
environment = EnvironmentManager(
|
19 |
+
path=os.path.join(project_path, "dotenv"),
|
20 |
+
env=os.environ.get("environment", "dev"),
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
if __name__ == '__main__':
|
25 |
+
pass
|
requirements-python-3-9-9.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.1
|
2 |
+
datasets==3.2.0
|
3 |
+
python-dotenv==1.0.1
|
4 |
+
scipy==1.13.1
|
5 |
+
librosa==0.10.2.post1
|
6 |
+
pandas==2.2.3
|
7 |
+
openpyxl==3.1.5
|
8 |
+
torch==2.5.1
|
9 |
+
torchaudio==2.5.1
|
10 |
+
overrides==7.7.0
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.12.0
|
2 |
+
datasets==3.2.0
|
3 |
+
python-dotenv==1.0.1
|
4 |
+
scipy==1.15.1
|
5 |
+
librosa==0.10.2.post1
|
6 |
+
pandas==2.2.3
|
7 |
+
openpyxl==3.1.5
|
8 |
+
torch==2.5.1
|
9 |
+
torchaudio==2.5.1
|
10 |
+
overrides==7.7.0
|
toolbox/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/json/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/json/misc.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import Callable
|
4 |
+
|
5 |
+
|
6 |
+
def traverse(js, callback: Callable, *args, **kwargs):
|
7 |
+
if isinstance(js, list):
|
8 |
+
result = list()
|
9 |
+
for l in js:
|
10 |
+
l = traverse(l, callback, *args, **kwargs)
|
11 |
+
result.append(l)
|
12 |
+
return result
|
13 |
+
elif isinstance(js, tuple):
|
14 |
+
result = list()
|
15 |
+
for l in js:
|
16 |
+
l = traverse(l, callback, *args, **kwargs)
|
17 |
+
result.append(l)
|
18 |
+
return tuple(result)
|
19 |
+
elif isinstance(js, dict):
|
20 |
+
result = dict()
|
21 |
+
for k, v in js.items():
|
22 |
+
k = traverse(k, callback, *args, **kwargs)
|
23 |
+
v = traverse(v, callback, *args, **kwargs)
|
24 |
+
result[k] = v
|
25 |
+
return result
|
26 |
+
elif isinstance(js, int):
|
27 |
+
return callback(js, *args, **kwargs)
|
28 |
+
elif isinstance(js, str):
|
29 |
+
return callback(js, *args, **kwargs)
|
30 |
+
else:
|
31 |
+
return js
|
32 |
+
|
33 |
+
|
34 |
+
def demo1():
|
35 |
+
d = {
|
36 |
+
"env": "ppe",
|
37 |
+
"mysql_connect": {
|
38 |
+
"host": "$mysql_connect_host",
|
39 |
+
"port": 3306,
|
40 |
+
"user": "callbot",
|
41 |
+
"password": "NxcloudAI2021!",
|
42 |
+
"database": "callbot_ppe",
|
43 |
+
"charset": "utf8"
|
44 |
+
},
|
45 |
+
"es_connect": {
|
46 |
+
"hosts": ["10.20.251.8"],
|
47 |
+
"http_auth": ["elastic", "ElasticAI2021!"],
|
48 |
+
"port": 9200
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
def callback(s):
|
53 |
+
if isinstance(s, str) and s.startswith('$'):
|
54 |
+
return s[1:]
|
55 |
+
return s
|
56 |
+
|
57 |
+
result = traverse(d, callback=callback)
|
58 |
+
print(result)
|
59 |
+
return
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == '__main__':
|
63 |
+
demo1()
|
toolbox/os/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/os/command.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
|
5 |
+
|
6 |
+
class Command(object):
|
7 |
+
custom_command = [
|
8 |
+
"cd"
|
9 |
+
]
|
10 |
+
|
11 |
+
@staticmethod
|
12 |
+
def _get_cmd(command):
|
13 |
+
command = str(command).strip()
|
14 |
+
if command == "":
|
15 |
+
return None
|
16 |
+
cmd_and_args = command.split(sep=" ")
|
17 |
+
cmd = cmd_and_args[0]
|
18 |
+
args = " ".join(cmd_and_args[1:])
|
19 |
+
return cmd, args
|
20 |
+
|
21 |
+
@classmethod
|
22 |
+
def popen(cls, command):
|
23 |
+
cmd, args = cls._get_cmd(command)
|
24 |
+
if cmd in cls.custom_command:
|
25 |
+
method = getattr(cls, cmd)
|
26 |
+
return method(args)
|
27 |
+
else:
|
28 |
+
resp = os.popen(command)
|
29 |
+
result = resp.read()
|
30 |
+
resp.close()
|
31 |
+
return result
|
32 |
+
|
33 |
+
@classmethod
|
34 |
+
def cd(cls, args):
|
35 |
+
if args.startswith("/"):
|
36 |
+
os.chdir(args)
|
37 |
+
else:
|
38 |
+
pwd = os.getcwd()
|
39 |
+
path = os.path.join(pwd, args)
|
40 |
+
os.chdir(path)
|
41 |
+
|
42 |
+
@classmethod
|
43 |
+
def system(cls, command):
|
44 |
+
return os.system(command)
|
45 |
+
|
46 |
+
def __init__(self):
|
47 |
+
pass
|
48 |
+
|
49 |
+
|
50 |
+
def ps_ef_grep(keyword: str):
|
51 |
+
cmd = "ps -ef | grep {}".format(keyword)
|
52 |
+
rows = Command.popen(cmd)
|
53 |
+
rows = str(rows).split("\n")
|
54 |
+
rows = [row for row in rows if row.__contains__(keyword) and not row.__contains__("grep")]
|
55 |
+
return rows
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
pass
|
toolbox/os/environment.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from dotenv.main import DotEnv
|
8 |
+
|
9 |
+
from toolbox.json.misc import traverse
|
10 |
+
|
11 |
+
|
12 |
+
class EnvironmentManager(object):
|
13 |
+
def __init__(self, path, env, override=False):
|
14 |
+
filename = os.path.join(path, '{}.env'.format(env))
|
15 |
+
self.filename = filename
|
16 |
+
|
17 |
+
load_dotenv(
|
18 |
+
dotenv_path=filename,
|
19 |
+
override=override
|
20 |
+
)
|
21 |
+
|
22 |
+
self._environ = dict()
|
23 |
+
|
24 |
+
def open_dotenv(self, filename: str = None):
|
25 |
+
filename = filename or self.filename
|
26 |
+
dotenv = DotEnv(
|
27 |
+
dotenv_path=filename,
|
28 |
+
stream=None,
|
29 |
+
verbose=False,
|
30 |
+
interpolate=False,
|
31 |
+
override=False,
|
32 |
+
encoding="utf-8",
|
33 |
+
)
|
34 |
+
result = dotenv.dict()
|
35 |
+
return result
|
36 |
+
|
37 |
+
def get(self, key, default=None, dtype=str):
|
38 |
+
result = os.environ.get(key)
|
39 |
+
if result is None:
|
40 |
+
if default is None:
|
41 |
+
result = None
|
42 |
+
else:
|
43 |
+
result = default
|
44 |
+
else:
|
45 |
+
result = dtype(result)
|
46 |
+
self._environ[key] = result
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
_DEFAULT_DTYPE_MAP = {
|
51 |
+
'int': int,
|
52 |
+
'float': float,
|
53 |
+
'str': str,
|
54 |
+
'json.loads': json.loads
|
55 |
+
}
|
56 |
+
|
57 |
+
|
58 |
+
class JsonConfig(object):
|
59 |
+
"""
|
60 |
+
将 json 中, 形如 `$float:threshold` 的值, 处理为:
|
61 |
+
从环境变量中查到 threshold, 再将其转换为 float 类型.
|
62 |
+
"""
|
63 |
+
def __init__(self, dtype_map: dict = None, environment: EnvironmentManager = None):
|
64 |
+
self.dtype_map = dtype_map or _DEFAULT_DTYPE_MAP
|
65 |
+
self.environment = environment or os.environ
|
66 |
+
|
67 |
+
def sanitize_by_filename(self, filename: str):
|
68 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
69 |
+
js = json.load(f)
|
70 |
+
|
71 |
+
return self.sanitize_by_json(js)
|
72 |
+
|
73 |
+
def sanitize_by_json(self, js):
|
74 |
+
js = traverse(
|
75 |
+
js,
|
76 |
+
callback=self.sanitize,
|
77 |
+
environment=self.environment
|
78 |
+
)
|
79 |
+
return js
|
80 |
+
|
81 |
+
def sanitize(self, string, environment):
|
82 |
+
"""支持 $ 符开始的, 环境变量配置"""
|
83 |
+
if isinstance(string, str) and string.startswith('$'):
|
84 |
+
dtype, key = string[1:].split(':')
|
85 |
+
dtype = self.dtype_map[dtype]
|
86 |
+
|
87 |
+
value = environment.get(key)
|
88 |
+
if value is None:
|
89 |
+
raise AssertionError('environment not exist. key: {}'.format(key))
|
90 |
+
|
91 |
+
value = dtype(value)
|
92 |
+
result = value
|
93 |
+
else:
|
94 |
+
result = string
|
95 |
+
return result
|
96 |
+
|
97 |
+
|
98 |
+
def demo1():
|
99 |
+
import json
|
100 |
+
|
101 |
+
from project_settings import project_path
|
102 |
+
|
103 |
+
environment = EnvironmentManager(
|
104 |
+
path=os.path.join(project_path, 'server/callbot_server/dotenv'),
|
105 |
+
env='dev',
|
106 |
+
)
|
107 |
+
init_scenes = environment.get(key='init_scenes', dtype=json.loads)
|
108 |
+
print(init_scenes)
|
109 |
+
print(environment._environ)
|
110 |
+
return
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == '__main__':
|
114 |
+
demo1()
|
toolbox/os/other.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import inspect
|
3 |
+
|
4 |
+
|
5 |
+
def pwd():
|
6 |
+
"""你在哪个文件调用此函数, 它就会返回那个文件所在的 dir 目标"""
|
7 |
+
frame = inspect.stack()[1]
|
8 |
+
module = inspect.getmodule(frame[0])
|
9 |
+
return os.path.dirname(os.path.abspath(module.__file__))
|
toolbox/torch/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torch/utils/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torch/utils/data/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torch/utils/data/dataset/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torch/utils/data/dataset/denoise_excel_dataset.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
from scipy.io import wavfile
|
9 |
+
import torch
|
10 |
+
import torchaudio
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
|
15 |
+
class DenoiseExcelDataset(Dataset):
|
16 |
+
def __init__(self,
|
17 |
+
excel_file: str,
|
18 |
+
expected_sample_rate: int,
|
19 |
+
resample: bool = False,
|
20 |
+
max_wave_value: float = 1.0,
|
21 |
+
):
|
22 |
+
self.excel_file = excel_file
|
23 |
+
self.expected_sample_rate = expected_sample_rate
|
24 |
+
self.resample = resample
|
25 |
+
self.max_wave_value = max_wave_value
|
26 |
+
|
27 |
+
self.samples = self.load_samples(excel_file)
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def load_samples(filename: str):
|
31 |
+
df = pd.read_excel(filename)
|
32 |
+
samples = list()
|
33 |
+
for i, row in tqdm(df.iterrows(), total=len(df)):
|
34 |
+
noise_filename = row["noise_filename"]
|
35 |
+
noise_raw_duration = row["noise_raw_duration"]
|
36 |
+
noise_offset = row["noise_offset"]
|
37 |
+
noise_duration = row["noise_duration"]
|
38 |
+
|
39 |
+
speech_filename = row["speech_filename"]
|
40 |
+
speech_raw_duration = row["speech_raw_duration"]
|
41 |
+
speech_offset = row["speech_offset"]
|
42 |
+
speech_duration = row["speech_duration"]
|
43 |
+
|
44 |
+
snr_db = row["snr_db"]
|
45 |
+
|
46 |
+
row = {
|
47 |
+
"noise_filename": noise_filename,
|
48 |
+
"noise_raw_duration": noise_raw_duration,
|
49 |
+
"noise_offset": noise_offset,
|
50 |
+
"noise_duration": noise_duration,
|
51 |
+
|
52 |
+
"speech_filename": speech_filename,
|
53 |
+
"speech_raw_duration": speech_raw_duration,
|
54 |
+
"speech_offset": speech_offset,
|
55 |
+
"speech_duration": speech_duration,
|
56 |
+
|
57 |
+
"snr_db": snr_db,
|
58 |
+
}
|
59 |
+
samples.append(row)
|
60 |
+
return samples
|
61 |
+
|
62 |
+
def __getitem__(self, index):
|
63 |
+
sample = self.samples[index]
|
64 |
+
noise_filename = sample["noise_filename"]
|
65 |
+
noise_offset = sample["noise_offset"]
|
66 |
+
noise_duration = sample["noise_duration"]
|
67 |
+
|
68 |
+
speech_filename = sample["speech_filename"]
|
69 |
+
speech_offset = sample["speech_offset"]
|
70 |
+
speech_duration = sample["speech_duration"]
|
71 |
+
|
72 |
+
snr_db = sample["snr_db"]
|
73 |
+
|
74 |
+
noise_wave = self.filename_to_waveform(noise_filename, noise_offset, noise_duration)
|
75 |
+
speech_wave = self.filename_to_waveform(speech_filename, speech_offset, speech_duration)
|
76 |
+
|
77 |
+
mix_wave, noise_wave_adjusted = self.mix_speech_and_noise(
|
78 |
+
speech=speech_wave.numpy(),
|
79 |
+
noise=noise_wave.numpy(),
|
80 |
+
snr_db=snr_db,
|
81 |
+
)
|
82 |
+
mix_wave = torch.tensor(mix_wave, dtype=torch.float32)
|
83 |
+
noise_wave_adjusted = torch.tensor(noise_wave_adjusted, dtype=torch.float32)
|
84 |
+
|
85 |
+
result = {
|
86 |
+
"noise_wave": noise_wave_adjusted,
|
87 |
+
"speech_wave": speech_wave,
|
88 |
+
"mix_wave": mix_wave,
|
89 |
+
"snr_db": snr_db,
|
90 |
+
}
|
91 |
+
return result
|
92 |
+
|
93 |
+
def __len__(self):
|
94 |
+
return len(self.samples)
|
95 |
+
|
96 |
+
def filename_to_waveform(self, filename: str, offset: float, duration: float):
|
97 |
+
try:
|
98 |
+
waveform, sample_rate = librosa.load(
|
99 |
+
filename,
|
100 |
+
sr=self.expected_sample_rate,
|
101 |
+
offset=offset,
|
102 |
+
duration=duration,
|
103 |
+
)
|
104 |
+
except ValueError as e:
|
105 |
+
print(f"load failed. error type: {type(e)}, error text: {str(e)}, filename: {filename}")
|
106 |
+
raise e
|
107 |
+
waveform = torch.tensor(waveform, dtype=torch.float32)
|
108 |
+
return waveform
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float):
|
112 |
+
l1 = len(speech)
|
113 |
+
l2 = len(noise)
|
114 |
+
l = min(l1, l2)
|
115 |
+
speech = speech[:l]
|
116 |
+
noise = noise[:l]
|
117 |
+
|
118 |
+
# np.float32, value between (-1, 1).
|
119 |
+
|
120 |
+
speech_power = np.mean(np.square(speech))
|
121 |
+
noise_power = speech_power / (10 ** (snr_db / 10))
|
122 |
+
|
123 |
+
noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2))
|
124 |
+
|
125 |
+
noisy_signal = speech + noise_adjusted
|
126 |
+
|
127 |
+
return noisy_signal, noise_adjusted
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == '__main__':
|
131 |
+
pass
|
toolbox/torchaudio/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
if __name__ == '__main__':
|
5 |
+
pass
|
toolbox/torchaudio/configuration_utils.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import copy
|
4 |
+
import os
|
5 |
+
from typing import Any, Dict, Union
|
6 |
+
|
7 |
+
import yaml
|
8 |
+
|
9 |
+
|
10 |
+
CONFIG_FILE = "config.yaml"
|
11 |
+
|
12 |
+
|
13 |
+
class PretrainedConfig(object):
|
14 |
+
def __init__(self, **kwargs):
|
15 |
+
pass
|
16 |
+
|
17 |
+
@classmethod
|
18 |
+
def _dict_from_yaml_file(cls, yaml_file: Union[str, os.PathLike]):
|
19 |
+
with open(yaml_file, encoding="utf-8") as f:
|
20 |
+
config_dict = yaml.safe_load(f)
|
21 |
+
return config_dict
|
22 |
+
|
23 |
+
@classmethod
|
24 |
+
def get_config_dict(
|
25 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike]
|
26 |
+
) -> Dict[str, Any]:
|
27 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
28 |
+
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_FILE)
|
29 |
+
else:
|
30 |
+
config_file = pretrained_model_name_or_path
|
31 |
+
config_dict = cls._dict_from_yaml_file(config_file)
|
32 |
+
return config_dict
|
33 |
+
|
34 |
+
@classmethod
|
35 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs):
|
36 |
+
for k, v in kwargs.items():
|
37 |
+
if k in config_dict.keys():
|
38 |
+
config_dict[k] = v
|
39 |
+
config = cls(**config_dict)
|
40 |
+
return config
|
41 |
+
|
42 |
+
@classmethod
|
43 |
+
def from_pretrained(
|
44 |
+
cls,
|
45 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
config_dict = cls.get_config_dict(pretrained_model_name_or_path)
|
49 |
+
return cls.from_dict(config_dict, **kwargs)
|
50 |
+
|
51 |
+
def to_dict(self):
|
52 |
+
output = copy.deepcopy(self.__dict__)
|
53 |
+
return output
|
54 |
+
|
55 |
+
def to_yaml_file(self, yaml_file_path: Union[str, os.PathLike]):
|
56 |
+
config_dict = self.to_dict()
|
57 |
+
|
58 |
+
with open(yaml_file_path, "w", encoding="utf-8") as writer:
|
59 |
+
yaml.safe_dump(config_dict, writer)
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == '__main__':
|
63 |
+
pass
|
toolbox/torchaudio/models/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
if __name__ == '__main__':
|
5 |
+
pass
|
toolbox/torchaudio/models/clean_unet/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/clean_unet/modeling_clean_unet.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://arxiv.org/abs/2202.07790
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
if __name__ == '__main__':
|
9 |
+
pass
|
toolbox/torchaudio/models/dfnet3/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/dfnet3/configuration_dfnet3.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import Any, Dict, List, Tuple, Union
|
4 |
+
|
5 |
+
from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class DfNetConfig(PretrainedConfig):
|
9 |
+
def __init__(self,
|
10 |
+
sample_rate: int,
|
11 |
+
fft_size: int,
|
12 |
+
hop_size: int,
|
13 |
+
df_bins: int,
|
14 |
+
erb_bins: int,
|
15 |
+
min_freq_bins_for_erb: int,
|
16 |
+
df_order: int,
|
17 |
+
df_lookahead: int,
|
18 |
+
norm_tau: int,
|
19 |
+
lsnr_max: int,
|
20 |
+
lsnr_min: int,
|
21 |
+
conv_channels: int,
|
22 |
+
conv_kernel_size_input: Tuple[int, int],
|
23 |
+
conv_kernel_size_inner: Tuple[int, int],
|
24 |
+
convt_kernel_size_inner: Tuple[int, int],
|
25 |
+
conv_lookahead: int,
|
26 |
+
emb_hidden_dim: int,
|
27 |
+
mask_post_filter: bool,
|
28 |
+
df_hidden_dim: int,
|
29 |
+
df_num_layers: int,
|
30 |
+
df_pathway_kernel_size_t: int,
|
31 |
+
df_gru_skip: str,
|
32 |
+
post_filter_beta: float,
|
33 |
+
df_n_iter: float,
|
34 |
+
lsnr_dropout: bool,
|
35 |
+
encoder_gru_skip_op: str,
|
36 |
+
encoder_linear_groups: int,
|
37 |
+
encoder_squeezed_gru_linear_groups: int,
|
38 |
+
encoder_concat: bool,
|
39 |
+
erb_decoder_gru_skip_op: str,
|
40 |
+
erb_decoder_linear_groups: int,
|
41 |
+
erb_decoder_emb_num_layers: int,
|
42 |
+
df_decoder_linear_groups: int,
|
43 |
+
**kwargs
|
44 |
+
):
|
45 |
+
super(DfNetConfig, self).__init__(**kwargs)
|
46 |
+
if df_gru_skip not in ("none", "identity", "grouped_linear"):
|
47 |
+
raise AssertionError
|
48 |
+
|
49 |
+
self.sample_rate = sample_rate
|
50 |
+
self.fft_size = fft_size
|
51 |
+
self.hop_size = hop_size
|
52 |
+
self.df_bins = df_bins
|
53 |
+
self.erb_bins = erb_bins
|
54 |
+
self.min_freq_bins_for_erb = min_freq_bins_for_erb
|
55 |
+
self.df_order = df_order
|
56 |
+
self.df_lookahead = df_lookahead
|
57 |
+
self.norm_tau = norm_tau
|
58 |
+
self.lsnr_max = lsnr_max
|
59 |
+
self.lsnr_min = lsnr_min
|
60 |
+
|
61 |
+
self.conv_channels = conv_channels
|
62 |
+
self.conv_kernel_size_input = conv_kernel_size_input
|
63 |
+
self.conv_kernel_size_inner = conv_kernel_size_inner
|
64 |
+
self.convt_kernel_size_inner = convt_kernel_size_inner
|
65 |
+
self.conv_lookahead = conv_lookahead
|
66 |
+
|
67 |
+
self.emb_hidden_dim = emb_hidden_dim
|
68 |
+
self.mask_post_filter = mask_post_filter
|
69 |
+
self.df_hidden_dim = df_hidden_dim
|
70 |
+
self.df_num_layers = df_num_layers
|
71 |
+
self.df_pathway_kernel_size_t = df_pathway_kernel_size_t
|
72 |
+
self.df_gru_skip = df_gru_skip
|
73 |
+
self.post_filter_beta = post_filter_beta
|
74 |
+
self.df_n_iter = df_n_iter
|
75 |
+
self.lsnr_dropout = lsnr_dropout
|
76 |
+
self.encoder_gru_skip_op = encoder_gru_skip_op
|
77 |
+
self.encoder_linear_groups = encoder_linear_groups
|
78 |
+
self.encoder_squeezed_gru_linear_groups = encoder_squeezed_gru_linear_groups
|
79 |
+
self.encoder_concat = encoder_concat
|
80 |
+
|
81 |
+
self.erb_decoder_gru_skip_op = erb_decoder_gru_skip_op
|
82 |
+
self.erb_decoder_linear_groups = erb_decoder_linear_groups
|
83 |
+
self.erb_decoder_emb_num_layers = erb_decoder_emb_num_layers
|
84 |
+
|
85 |
+
self.df_decoder_linear_groups = df_decoder_linear_groups
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
pass
|
toolbox/torchaudio/models/dfnet3/features.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import math
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def freq2erb(freq_hz: float) -> float:
|
9 |
+
"""
|
10 |
+
https://www.cnblogs.com/LXP-Never/p/16011229.html
|
11 |
+
1 / (24.7 * 9.265) = 0.00436976
|
12 |
+
"""
|
13 |
+
return 9.265 * math.log(freq_hz / (24.7 * 9.265) + 1)
|
14 |
+
|
15 |
+
|
16 |
+
def erb2freq(n_erb: float) -> float:
|
17 |
+
return 24.7 * 9.265 * (math.exp(n_erb / 9.265) - 1)
|
18 |
+
|
19 |
+
|
20 |
+
def get_erb_widths(sample_rate: int, fft_size: int, erb_bins: int, min_freq_bins_for_erb: int) -> np.ndarray:
|
21 |
+
"""
|
22 |
+
https://github.com/Rikorose/DeepFilterNet/blob/main/libDF/src/lib.rs
|
23 |
+
:param sample_rate:
|
24 |
+
:param fft_size:
|
25 |
+
:param erb_bins: erb (Equivalent Rectangular Bandwidth) 等效矩形带宽的通道数.
|
26 |
+
:param min_freq_bins_for_erb: Minimum number of frequency bands per erb band
|
27 |
+
:return:
|
28 |
+
"""
|
29 |
+
nyq_freq = sample_rate / 2.
|
30 |
+
freq_width: float = sample_rate / fft_size
|
31 |
+
|
32 |
+
min_erb: float = freq2erb(0.)
|
33 |
+
max_erb: float = freq2erb(nyq_freq)
|
34 |
+
|
35 |
+
erb = [0] * erb_bins
|
36 |
+
step = (max_erb - min_erb) / erb_bins
|
37 |
+
|
38 |
+
prev_freq_bin = 0
|
39 |
+
freq_over = 0
|
40 |
+
for i in range(1, erb_bins + 1):
|
41 |
+
f = erb2freq(min_erb + i * step)
|
42 |
+
freq_bin = int(round(f / freq_width))
|
43 |
+
freq_bins = freq_bin - prev_freq_bin - freq_over
|
44 |
+
|
45 |
+
if freq_bins < min_freq_bins_for_erb:
|
46 |
+
freq_over = min_freq_bins_for_erb - freq_bins
|
47 |
+
freq_bins = min_freq_bins_for_erb
|
48 |
+
else:
|
49 |
+
freq_over = 0
|
50 |
+
erb[i - 1] = freq_bins
|
51 |
+
prev_freq_bin = freq_bin
|
52 |
+
|
53 |
+
erb[erb_bins - 1] += 1
|
54 |
+
too_large = sum(erb) - (fft_size / 2 + 1)
|
55 |
+
if too_large > 0:
|
56 |
+
erb[erb_bins - 1] -= too_large
|
57 |
+
return np.array(erb, dtype=np.uint64)
|
58 |
+
|
59 |
+
|
60 |
+
def get_erb_filter_bank(erb_widths: np.ndarray,
|
61 |
+
sample_rate: int,
|
62 |
+
normalized: bool = True,
|
63 |
+
inverse: bool = False,
|
64 |
+
):
|
65 |
+
num_freq_bins = int(np.sum(erb_widths))
|
66 |
+
num_erb_bins = len(erb_widths)
|
67 |
+
|
68 |
+
fb: np.ndarray = np.zeros(shape=(num_freq_bins, num_erb_bins))
|
69 |
+
|
70 |
+
points = np.cumsum([0] + erb_widths.tolist()).astype(int)[:-1]
|
71 |
+
for i, (b, w) in enumerate(zip(points.tolist(), erb_widths.tolist())):
|
72 |
+
fb[b: b + w, i] = 1
|
73 |
+
|
74 |
+
if inverse:
|
75 |
+
fb = fb.T
|
76 |
+
if not normalized:
|
77 |
+
fb /= np.sum(fb, axis=1, keepdims=True)
|
78 |
+
else:
|
79 |
+
if normalized:
|
80 |
+
fb /= np.sum(fb, axis=0)
|
81 |
+
return fb
|
82 |
+
|
83 |
+
|
84 |
+
def spec2erb(spec: np.ndarray, erb_fb: np.ndarray, db: bool = True):
|
85 |
+
"""
|
86 |
+
ERB filterbank and transform to decibel scale.
|
87 |
+
|
88 |
+
:param spec: Spectrum of shape [B, C, T, F].
|
89 |
+
:param erb_fb: ERB filterbank array of shape [B] containing the ERB widths,
|
90 |
+
where B are the number of ERB bins.
|
91 |
+
:param db: Whether to transform the output into decibel scale. Defaults to `True`.
|
92 |
+
:return:
|
93 |
+
"""
|
94 |
+
# complex spec to power spec. (real * real + image * image)
|
95 |
+
spec_ = np.abs(spec) ** 2
|
96 |
+
|
97 |
+
# spec to erb feature.
|
98 |
+
erb_feat = np.matmul(spec_, erb_fb)
|
99 |
+
|
100 |
+
if db:
|
101 |
+
erb_feat = 10 * np.log10(erb_feat + 1e-10)
|
102 |
+
|
103 |
+
erb_feat = np.array(erb_feat, dtype=np.float32)
|
104 |
+
return erb_feat
|
105 |
+
|
106 |
+
|
107 |
+
def _calculate_norm_alpha(sample_rate: int, hop_size: int, tau: float):
|
108 |
+
"""Exponential decay factor alpha for a given tau (decay window size [s])."""
|
109 |
+
dt = hop_size / sample_rate
|
110 |
+
result = math.exp(-dt / tau)
|
111 |
+
return result
|
112 |
+
|
113 |
+
|
114 |
+
def get_norm_alpha(sample_rate: int, hop_size: int, norm_tau: float) -> float:
|
115 |
+
a_ = _calculate_norm_alpha(sample_rate=sample_rate, hop_size=hop_size, tau=norm_tau)
|
116 |
+
|
117 |
+
precision = 3
|
118 |
+
a = 1.0
|
119 |
+
while a >= 1.0:
|
120 |
+
a = round(a_, precision)
|
121 |
+
precision += 1
|
122 |
+
|
123 |
+
return a
|
124 |
+
|
125 |
+
|
126 |
+
MEAN_NORM_INIT = [-60., -90.]
|
127 |
+
|
128 |
+
|
129 |
+
def make_erb_norm_state(erb_bins: int, channels: int) -> np.ndarray:
|
130 |
+
state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins)
|
131 |
+
state = np.expand_dims(state, axis=0)
|
132 |
+
state = np.repeat(state, channels, axis=0)
|
133 |
+
|
134 |
+
# state shape: (audio_channels, erb_bins)
|
135 |
+
return state
|
136 |
+
|
137 |
+
|
138 |
+
def erb_normalize(erb_feat: np.ndarray, alpha: float, state: np.ndarray = None):
|
139 |
+
erb_feat = np.copy(erb_feat)
|
140 |
+
batch_size, time_steps, erb_bins = erb_feat.shape
|
141 |
+
|
142 |
+
if state is None:
|
143 |
+
state = make_erb_norm_state(erb_bins, erb_feat.shape[0])
|
144 |
+
# state = np.linspace(MEAN_NORM_INIT[0], MEAN_NORM_INIT[1], erb_bins)
|
145 |
+
# state = np.expand_dims(state, axis=0)
|
146 |
+
# state = np.repeat(state, erb_feat.shape[0], axis=0)
|
147 |
+
|
148 |
+
for i in range(batch_size):
|
149 |
+
for j in range(time_steps):
|
150 |
+
for k in range(erb_bins):
|
151 |
+
x = erb_feat[i][j][k]
|
152 |
+
s = state[i][k]
|
153 |
+
|
154 |
+
state[i][k] = x * (1. - alpha) + s * alpha
|
155 |
+
erb_feat[i][j][k] -= state[i][k]
|
156 |
+
erb_feat[i][j][k] /= 40.
|
157 |
+
|
158 |
+
return erb_feat
|
159 |
+
|
160 |
+
|
161 |
+
UNIT_NORM_INIT = [0.001, 0.0001]
|
162 |
+
|
163 |
+
|
164 |
+
def make_spec_norm_state(df_bins: int, channels: int) -> np.ndarray:
|
165 |
+
state = np.linspace(UNIT_NORM_INIT[0], UNIT_NORM_INIT[1], df_bins)
|
166 |
+
state = np.expand_dims(state, axis=0)
|
167 |
+
state = np.repeat(state, channels, axis=0)
|
168 |
+
|
169 |
+
# state shape: (audio_channels, df_bins)
|
170 |
+
return state
|
171 |
+
|
172 |
+
|
173 |
+
def spec_normalize(spec_feat: np.ndarray, alpha: float, state: np.ndarray = None):
|
174 |
+
spec_feat = np.copy(spec_feat)
|
175 |
+
batch_size, time_steps, df_bins = spec_feat.shape
|
176 |
+
|
177 |
+
if state is None:
|
178 |
+
state = make_spec_norm_state(df_bins, spec_feat.shape[0])
|
179 |
+
|
180 |
+
for i in range(batch_size):
|
181 |
+
for j in range(time_steps):
|
182 |
+
for k in range(df_bins):
|
183 |
+
x = spec_feat[i][j][k]
|
184 |
+
s = state[i][k]
|
185 |
+
|
186 |
+
state[i][k] = np.abs(x) * (1. - alpha) + s * alpha
|
187 |
+
spec_feat[i][j][k] /= np.sqrt(state[i][k])
|
188 |
+
return spec_feat
|
189 |
+
|
190 |
+
|
191 |
+
if __name__ == '__main__':
|
192 |
+
pass
|
toolbox/torchaudio/models/dfnet3/modeling_dfnet3.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
from toolbox.torchaudio.models.dfnet3.configuration_dfnet3 import DfNetConfig
|
12 |
+
from toolbox.torchaudio.models.dfnet3 import multiframes as MF
|
13 |
+
from toolbox.torchaudio.models.dfnet3 import utils
|
14 |
+
|
15 |
+
logger = logging.getLogger("toolbox")
|
16 |
+
|
17 |
+
PI = 3.1415926535897932384626433
|
18 |
+
|
19 |
+
|
20 |
+
norm_layer_dict = {
|
21 |
+
"batch_norm_2d": torch.nn.BatchNorm2d
|
22 |
+
}
|
23 |
+
|
24 |
+
activation_layer_dict = {
|
25 |
+
"relu": torch.nn.ReLU,
|
26 |
+
"identity": torch.nn.Identity,
|
27 |
+
"sigmoid": torch.nn.Sigmoid,
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class CausalConv2d(nn.Sequential):
|
32 |
+
def __init__(self,
|
33 |
+
in_channels: int,
|
34 |
+
out_channels: int,
|
35 |
+
kernel_size: Union[int, Iterable[int]],
|
36 |
+
fstride: int = 1,
|
37 |
+
dilation: int = 1,
|
38 |
+
fpad: bool = True,
|
39 |
+
bias: bool = True,
|
40 |
+
separable: bool = False,
|
41 |
+
norm_layer: str = "batch_norm_2d",
|
42 |
+
activation_layer: str = "relu",
|
43 |
+
):
|
44 |
+
"""
|
45 |
+
Causal Conv2d by delaying the signal for any lookahead.
|
46 |
+
|
47 |
+
Expected input format: [B, C, T, F]
|
48 |
+
|
49 |
+
:param in_channels:
|
50 |
+
:param out_channels:
|
51 |
+
:param kernel_size:
|
52 |
+
:param fstride:
|
53 |
+
:param dilation:
|
54 |
+
:param fpad:
|
55 |
+
"""
|
56 |
+
super(CausalConv2d, self).__init__()
|
57 |
+
lookahead = 0
|
58 |
+
|
59 |
+
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else tuple(kernel_size)
|
60 |
+
|
61 |
+
if fpad:
|
62 |
+
fpad_ = kernel_size[1] // 2 + dilation - 1
|
63 |
+
else:
|
64 |
+
fpad_ = 0
|
65 |
+
|
66 |
+
# for last 2 dim, pad (left, right, top, bottom).
|
67 |
+
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
|
68 |
+
|
69 |
+
layers = []
|
70 |
+
if any(x > 0 for x in pad):
|
71 |
+
layers.append(nn.ConstantPad2d(pad, 0.0))
|
72 |
+
|
73 |
+
groups = math.gcd(in_channels, out_channels) if separable else 1
|
74 |
+
if groups == 1:
|
75 |
+
separable = False
|
76 |
+
if max(kernel_size) == 1:
|
77 |
+
separable = False
|
78 |
+
|
79 |
+
layers.append(
|
80 |
+
nn.Conv2d(
|
81 |
+
in_channels,
|
82 |
+
out_channels,
|
83 |
+
kernel_size=kernel_size,
|
84 |
+
padding=(0, fpad_),
|
85 |
+
stride=(1, fstride), # stride over time is always 1
|
86 |
+
dilation=(1, dilation), # dilation over time is always 1
|
87 |
+
groups=groups,
|
88 |
+
bias=bias,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
|
92 |
+
if separable:
|
93 |
+
layers.append(
|
94 |
+
nn.Conv2d(
|
95 |
+
out_channels,
|
96 |
+
out_channels,
|
97 |
+
kernel_size=1,
|
98 |
+
bias=False,
|
99 |
+
)
|
100 |
+
)
|
101 |
+
|
102 |
+
if norm_layer is not None:
|
103 |
+
norm_layer = norm_layer_dict[norm_layer]
|
104 |
+
layers.append(norm_layer(out_channels))
|
105 |
+
|
106 |
+
if activation_layer is not None:
|
107 |
+
activation_layer = activation_layer_dict[activation_layer]
|
108 |
+
layers.append(activation_layer())
|
109 |
+
|
110 |
+
super().__init__(*layers)
|
111 |
+
|
112 |
+
|
113 |
+
class CausalConvTranspose2d(nn.Sequential):
|
114 |
+
def __init__(self,
|
115 |
+
in_channels: int,
|
116 |
+
out_channels: int,
|
117 |
+
kernel_size: Union[int, Iterable[int]],
|
118 |
+
fstride: int = 1,
|
119 |
+
dilation: int = 1,
|
120 |
+
fpad: bool = True,
|
121 |
+
bias: bool = True,
|
122 |
+
separable: bool = False,
|
123 |
+
norm_layer: str = "batch_norm_2d",
|
124 |
+
activation_layer: str = "relu",
|
125 |
+
):
|
126 |
+
"""
|
127 |
+
Causal ConvTranspose2d.
|
128 |
+
|
129 |
+
Expected input format: [B, C, T, F]
|
130 |
+
"""
|
131 |
+
super(CausalConvTranspose2d, self).__init__()
|
132 |
+
lookahead = 0
|
133 |
+
|
134 |
+
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
135 |
+
|
136 |
+
if fpad:
|
137 |
+
fpad_ = kernel_size[1] // 2
|
138 |
+
else:
|
139 |
+
fpad_ = 0
|
140 |
+
|
141 |
+
# for last 2 dim, pad (left, right, top, bottom).
|
142 |
+
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
|
143 |
+
|
144 |
+
layers = []
|
145 |
+
if any(x > 0 for x in pad):
|
146 |
+
layers.append(nn.ConstantPad2d(pad, 0.0))
|
147 |
+
|
148 |
+
groups = math.gcd(in_channels, out_channels) if separable else 1
|
149 |
+
if groups == 1:
|
150 |
+
separable = False
|
151 |
+
|
152 |
+
layers.append(
|
153 |
+
nn.ConvTranspose2d(
|
154 |
+
in_channels,
|
155 |
+
out_channels,
|
156 |
+
kernel_size=kernel_size,
|
157 |
+
padding=(kernel_size[0] - 1, fpad_ + dilation - 1),
|
158 |
+
output_padding=(0, fpad_),
|
159 |
+
stride=(1, fstride), # stride over time is always 1
|
160 |
+
dilation=(1, dilation), # dilation over time is always 1
|
161 |
+
groups=groups,
|
162 |
+
bias=bias,
|
163 |
+
)
|
164 |
+
)
|
165 |
+
|
166 |
+
if separable:
|
167 |
+
layers.append(
|
168 |
+
nn.Conv2d(
|
169 |
+
out_channels,
|
170 |
+
out_channels,
|
171 |
+
kernel_size=1,
|
172 |
+
bias=False,
|
173 |
+
)
|
174 |
+
)
|
175 |
+
|
176 |
+
if norm_layer is not None:
|
177 |
+
norm_layer = norm_layer_dict[norm_layer]
|
178 |
+
layers.append(norm_layer(out_channels))
|
179 |
+
|
180 |
+
if activation_layer is not None:
|
181 |
+
activation_layer = activation_layer_dict[activation_layer]
|
182 |
+
layers.append(activation_layer())
|
183 |
+
|
184 |
+
super().__init__(*layers)
|
185 |
+
|
186 |
+
|
187 |
+
class GroupedLinear(nn.Module):
|
188 |
+
|
189 |
+
def __init__(self, input_size: int, hidden_size: int, groups: int = 1):
|
190 |
+
super().__init__()
|
191 |
+
# self.weight: Tensor
|
192 |
+
self.input_size = input_size
|
193 |
+
self.hidden_size = hidden_size
|
194 |
+
self.groups = groups
|
195 |
+
assert input_size % groups == 0, f"Input size {input_size} not divisible by {groups}"
|
196 |
+
assert hidden_size % groups == 0, f"Hidden size {hidden_size} not divisible by {groups}"
|
197 |
+
self.ws = input_size // groups
|
198 |
+
self.register_parameter(
|
199 |
+
"weight",
|
200 |
+
torch.nn.Parameter(
|
201 |
+
torch.zeros(groups, input_size // groups, hidden_size // groups), requires_grad=True
|
202 |
+
),
|
203 |
+
)
|
204 |
+
self.reset_parameters()
|
205 |
+
|
206 |
+
def reset_parameters(self):
|
207 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) # type: ignore
|
208 |
+
|
209 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
210 |
+
# x: [..., I]
|
211 |
+
b, t, _ = x.shape
|
212 |
+
# new_shape = list(x.shape)[:-1] + [self.groups, self.ws]
|
213 |
+
new_shape = (b, t, self.groups, self.ws)
|
214 |
+
x = x.view(new_shape)
|
215 |
+
# The better way, but not supported by torchscript
|
216 |
+
# x = x.unflatten(-1, (self.groups, self.ws)) # [..., G, I/G]
|
217 |
+
x = torch.einsum("btgi,gih->btgh", x, self.weight) # [..., G, H/G]
|
218 |
+
x = x.flatten(2, 3) # [B, T, H]
|
219 |
+
return x
|
220 |
+
|
221 |
+
def __repr__(self):
|
222 |
+
cls = self.__class__.__name__
|
223 |
+
return f"{cls}(input_size: {self.input_size}, hidden_size: {self.hidden_size}, groups: {self.groups})"
|
224 |
+
|
225 |
+
|
226 |
+
class SqueezedGRU_S(nn.Module):
|
227 |
+
"""
|
228 |
+
SGE net: Video object detection with squeezed GRU and information entropy map
|
229 |
+
https://arxiv.org/abs/2106.07224
|
230 |
+
"""
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
input_size: int,
|
235 |
+
hidden_size: int,
|
236 |
+
output_size: Optional[int] = None,
|
237 |
+
num_layers: int = 1,
|
238 |
+
linear_groups: int = 8,
|
239 |
+
batch_first: bool = True,
|
240 |
+
skip_op: str = "none",
|
241 |
+
activation_layer: str = "identity",
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.input_size = input_size
|
245 |
+
self.hidden_size = hidden_size
|
246 |
+
|
247 |
+
self.linear_in = nn.Sequential(
|
248 |
+
GroupedLinear(
|
249 |
+
input_size=input_size,
|
250 |
+
hidden_size=hidden_size,
|
251 |
+
groups=linear_groups,
|
252 |
+
),
|
253 |
+
activation_layer_dict[activation_layer](),
|
254 |
+
)
|
255 |
+
|
256 |
+
# gru skip operator
|
257 |
+
self.gru_skip_op = None
|
258 |
+
|
259 |
+
if skip_op == "none":
|
260 |
+
self.gru_skip_op = None
|
261 |
+
elif skip_op == "identity":
|
262 |
+
if not input_size != output_size:
|
263 |
+
raise AssertionError("Dimensions do not match")
|
264 |
+
self.gru_skip_op = nn.Identity()
|
265 |
+
elif skip_op == "grouped_linear":
|
266 |
+
self.gru_skip_op = GroupedLinear(
|
267 |
+
input_size=hidden_size,
|
268 |
+
hidden_size=hidden_size,
|
269 |
+
groups=linear_groups,
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
raise NotImplementedError()
|
273 |
+
|
274 |
+
self.gru = nn.GRU(
|
275 |
+
input_size=hidden_size,
|
276 |
+
hidden_size=hidden_size,
|
277 |
+
num_layers=num_layers,
|
278 |
+
batch_first=batch_first,
|
279 |
+
)
|
280 |
+
|
281 |
+
if output_size is not None:
|
282 |
+
self.linear_out = nn.Sequential(
|
283 |
+
GroupedLinear(
|
284 |
+
input_size=hidden_size,
|
285 |
+
hidden_size=output_size,
|
286 |
+
groups=linear_groups,
|
287 |
+
),
|
288 |
+
activation_layer_dict[activation_layer](),
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
self.linear_out = nn.Identity()
|
292 |
+
|
293 |
+
def forward(self, inputs: torch.Tensor, h=None) -> Tuple[torch.Tensor, torch.Tensor]:
|
294 |
+
x = self.linear_in(inputs)
|
295 |
+
|
296 |
+
x, h = self.gru(x, h)
|
297 |
+
|
298 |
+
x = self.linear_out(x)
|
299 |
+
|
300 |
+
if self.gru_skip_op is not None:
|
301 |
+
x = x + self.gru_skip_op(inputs)
|
302 |
+
|
303 |
+
return x, h
|
304 |
+
|
305 |
+
|
306 |
+
class Add(nn.Module):
|
307 |
+
def forward(self, a, b):
|
308 |
+
return a + b
|
309 |
+
|
310 |
+
|
311 |
+
class Concat(nn.Module):
|
312 |
+
def forward(self, a, b):
|
313 |
+
return torch.cat((a, b), dim=-1)
|
314 |
+
|
315 |
+
|
316 |
+
class Encoder(nn.Module):
|
317 |
+
def __init__(self, config: DfNetConfig):
|
318 |
+
super(Encoder, self).__init__()
|
319 |
+
self.emb_in_dim = config.conv_channels * config.erb_bins // 4
|
320 |
+
self.emb_out_dim = config.conv_channels * config.erb_bins // 4
|
321 |
+
self.emb_hidden_dim = config.emb_hidden_dim
|
322 |
+
|
323 |
+
self.erb_conv0 = CausalConv2d(
|
324 |
+
in_channels=1,
|
325 |
+
out_channels=config.conv_channels,
|
326 |
+
kernel_size=config.conv_kernel_size_input,
|
327 |
+
bias=False,
|
328 |
+
separable=True,
|
329 |
+
)
|
330 |
+
self.erb_conv1 = CausalConv2d(
|
331 |
+
in_channels=config.conv_channels,
|
332 |
+
out_channels=config.conv_channels,
|
333 |
+
kernel_size=config.conv_kernel_size_inner,
|
334 |
+
bias=False,
|
335 |
+
separable=True,
|
336 |
+
fstride=2,
|
337 |
+
)
|
338 |
+
self.erb_conv2 = CausalConv2d(
|
339 |
+
in_channels=config.conv_channels,
|
340 |
+
out_channels=config.conv_channels,
|
341 |
+
kernel_size=config.conv_kernel_size_inner,
|
342 |
+
bias=False,
|
343 |
+
separable=True,
|
344 |
+
fstride=2,
|
345 |
+
)
|
346 |
+
self.erb_conv3 = CausalConv2d(
|
347 |
+
in_channels=config.conv_channels,
|
348 |
+
out_channels=config.conv_channels,
|
349 |
+
kernel_size=config.conv_kernel_size_inner,
|
350 |
+
bias=False,
|
351 |
+
separable=True,
|
352 |
+
fstride=1,
|
353 |
+
)
|
354 |
+
|
355 |
+
self.df_conv0 = CausalConv2d(
|
356 |
+
in_channels=2,
|
357 |
+
out_channels=config.conv_channels,
|
358 |
+
kernel_size=config.conv_kernel_size_input,
|
359 |
+
bias=False,
|
360 |
+
separable=True,
|
361 |
+
)
|
362 |
+
self.df_conv1 = CausalConv2d(
|
363 |
+
in_channels=config.conv_channels,
|
364 |
+
out_channels=config.conv_channels,
|
365 |
+
kernel_size=config.conv_kernel_size_inner,
|
366 |
+
bias=False,
|
367 |
+
separable=True,
|
368 |
+
fstride=2,
|
369 |
+
)
|
370 |
+
|
371 |
+
self.df_fc_emb = nn.Sequential(
|
372 |
+
GroupedLinear(
|
373 |
+
config.conv_channels * config.df_bins // 2,
|
374 |
+
self.emb_in_dim,
|
375 |
+
groups=config.encoder_linear_groups
|
376 |
+
),
|
377 |
+
nn.ReLU(inplace=True)
|
378 |
+
)
|
379 |
+
|
380 |
+
if config.encoder_concat:
|
381 |
+
self.emb_in_dim *= 2
|
382 |
+
self.combine = Concat()
|
383 |
+
else:
|
384 |
+
self.combine = Add()
|
385 |
+
|
386 |
+
self.emb_gru = SqueezedGRU_S(
|
387 |
+
self.emb_in_dim,
|
388 |
+
self.emb_hidden_dim,
|
389 |
+
output_size=self.emb_out_dim,
|
390 |
+
num_layers=1,
|
391 |
+
batch_first=True,
|
392 |
+
skip_op=config.encoder_gru_skip_op,
|
393 |
+
linear_groups=config.encoder_squeezed_gru_linear_groups,
|
394 |
+
activation_layer="relu",
|
395 |
+
)
|
396 |
+
|
397 |
+
self.lsnr_fc = nn.Sequential(
|
398 |
+
nn.Linear(self.emb_out_dim, 1),
|
399 |
+
nn.Sigmoid()
|
400 |
+
)
|
401 |
+
self.lsnr_scale = config.lsnr_max - config.lsnr_min
|
402 |
+
self.lsnr_offset = config.lsnr_min
|
403 |
+
|
404 |
+
def forward(self,
|
405 |
+
feat_erb: torch.Tensor,
|
406 |
+
feat_spec: torch.Tensor,
|
407 |
+
h: torch.Tensor = None,
|
408 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
409 |
+
# Encodes erb; erb should be in dB scale + normalized; Fe are number of erb bands.
|
410 |
+
# erb: [B, 1, T, Fe]
|
411 |
+
# spec: [B, 2, T, Fc]
|
412 |
+
# b, _, t, _ = feat_erb.shape
|
413 |
+
e0 = self.erb_conv0(feat_erb) # [B, C, T, F]
|
414 |
+
e1 = self.erb_conv1(e0) # [B, C*2, T, F/2]
|
415 |
+
e2 = self.erb_conv2(e1) # [B, C*4, T, F/4]
|
416 |
+
e3 = self.erb_conv3(e2) # [B, C*4, T, F/4]
|
417 |
+
c0 = self.df_conv0(feat_spec) # [B, C, T, Fc]
|
418 |
+
c1 = self.df_conv1(c0) # [B, C*2, T, Fc/2]
|
419 |
+
cemb = c1.permute(0, 2, 3, 1).flatten(2) # [B, T, -1]
|
420 |
+
cemb = self.df_fc_emb(cemb) # [T, B, C * F/4]
|
421 |
+
emb = e3.permute(0, 2, 3, 1).flatten(2) # [B, T, C * F]
|
422 |
+
emb = self.combine(emb, cemb)
|
423 |
+
emb, h = self.emb_gru(emb, h) # [B, T, -1]
|
424 |
+
|
425 |
+
lsnr = self.lsnr_fc(emb) * self.lsnr_scale + self.lsnr_offset
|
426 |
+
return e0, e1, e2, e3, emb, c0, lsnr, h
|
427 |
+
|
428 |
+
|
429 |
+
class ErbDecoder(nn.Module):
|
430 |
+
def __init__(self,
|
431 |
+
config: DfNetConfig,
|
432 |
+
):
|
433 |
+
super(ErbDecoder, self).__init__()
|
434 |
+
if config.erb_bins % 8 != 0:
|
435 |
+
raise AssertionError("erb_bins should be divisible by 8")
|
436 |
+
|
437 |
+
self.emb_in_dim = config.conv_channels * config.erb_bins // 4
|
438 |
+
self.emb_out_dim = config.conv_channels * config.erb_bins // 4
|
439 |
+
self.emb_hidden_dim = config.emb_hidden_dim
|
440 |
+
|
441 |
+
self.emb_gru = SqueezedGRU_S(
|
442 |
+
self.emb_in_dim,
|
443 |
+
self.emb_hidden_dim,
|
444 |
+
output_size=self.emb_out_dim,
|
445 |
+
num_layers=config.erb_decoder_emb_num_layers - 1,
|
446 |
+
batch_first=True,
|
447 |
+
skip_op=config.erb_decoder_gru_skip_op,
|
448 |
+
linear_groups=config.erb_decoder_linear_groups,
|
449 |
+
activation_layer="relu",
|
450 |
+
)
|
451 |
+
|
452 |
+
# convt: TransposedConvolution, convp: Pathway (encoder to decoder) convolutions
|
453 |
+
self.conv3p = CausalConv2d(
|
454 |
+
in_channels=config.conv_channels,
|
455 |
+
out_channels=config.conv_channels,
|
456 |
+
kernel_size=1,
|
457 |
+
bias=False,
|
458 |
+
separable=True,
|
459 |
+
)
|
460 |
+
self.convt3 = CausalConv2d(
|
461 |
+
in_channels=config.conv_channels,
|
462 |
+
out_channels=config.conv_channels,
|
463 |
+
kernel_size=config.conv_kernel_size_inner,
|
464 |
+
bias=False,
|
465 |
+
separable=True,
|
466 |
+
)
|
467 |
+
self.conv2p = CausalConv2d(
|
468 |
+
in_channels=config.conv_channels,
|
469 |
+
out_channels=config.conv_channels,
|
470 |
+
kernel_size=1,
|
471 |
+
bias=False,
|
472 |
+
separable=True,
|
473 |
+
)
|
474 |
+
self.convt2 = CausalConvTranspose2d(
|
475 |
+
in_channels=config.conv_channels,
|
476 |
+
out_channels=config.conv_channels,
|
477 |
+
fstride=2,
|
478 |
+
kernel_size=config.convt_kernel_size_inner,
|
479 |
+
bias=False,
|
480 |
+
separable=True,
|
481 |
+
)
|
482 |
+
self.conv1p = CausalConv2d(
|
483 |
+
in_channels=config.conv_channels,
|
484 |
+
out_channels=config.conv_channels,
|
485 |
+
kernel_size=1,
|
486 |
+
bias=False,
|
487 |
+
separable=True,
|
488 |
+
)
|
489 |
+
self.convt1 = CausalConvTranspose2d(
|
490 |
+
in_channels=config.conv_channels,
|
491 |
+
out_channels=config.conv_channels,
|
492 |
+
fstride=2,
|
493 |
+
kernel_size=config.convt_kernel_size_inner,
|
494 |
+
bias=False,
|
495 |
+
separable=True,
|
496 |
+
)
|
497 |
+
self.conv0p = CausalConv2d(
|
498 |
+
in_channels=config.conv_channels,
|
499 |
+
out_channels=config.conv_channels,
|
500 |
+
kernel_size=1,
|
501 |
+
bias=False,
|
502 |
+
separable=True,
|
503 |
+
)
|
504 |
+
self.conv0_out = CausalConv2d(
|
505 |
+
in_channels=config.conv_channels,
|
506 |
+
out_channels=1,
|
507 |
+
kernel_size=config.conv_kernel_size_inner,
|
508 |
+
activation_layer="sigmoid",
|
509 |
+
bias=False,
|
510 |
+
separable=True,
|
511 |
+
)
|
512 |
+
|
513 |
+
def forward(self, emb, e3, e2, e1, e0) -> torch.Tensor:
|
514 |
+
# Estimates erb mask
|
515 |
+
b, _, t, f8 = e3.shape
|
516 |
+
emb, _ = self.emb_gru(emb)
|
517 |
+
emb = emb.view(b, t, f8, -1).permute(0, 3, 1, 2) # [B, C*8, T, F/8]
|
518 |
+
e3 = self.convt3(self.conv3p(e3) + emb) # [B, C*4, T, F/4]
|
519 |
+
e2 = self.convt2(self.conv2p(e2) + e3) # [B, C*2, T, F/2]
|
520 |
+
e1 = self.convt1(self.conv1p(e1) + e2) # [B, C, T, F]
|
521 |
+
m = self.conv0_out(self.conv0p(e0) + e1) # [B, 1, T, F]
|
522 |
+
return m
|
523 |
+
|
524 |
+
|
525 |
+
class Mask(nn.Module):
|
526 |
+
def __init__(self, erb_inv_fb: torch.FloatTensor, post_filter: bool = False, eps: float = 1e-12):
|
527 |
+
super().__init__()
|
528 |
+
self.erb_inv_fb: torch.FloatTensor
|
529 |
+
self.register_buffer("erb_inv_fb", erb_inv_fb.float())
|
530 |
+
self.clamp_tensor = torch.__version__ > "1.9.0" or torch.__version__ == "1.9.0"
|
531 |
+
self.post_filter = post_filter
|
532 |
+
self.eps = eps
|
533 |
+
|
534 |
+
def pf(self, mask: torch.Tensor, beta: float = 0.02) -> torch.Tensor:
|
535 |
+
"""
|
536 |
+
Post-Filter
|
537 |
+
|
538 |
+
A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech.
|
539 |
+
https://arxiv.org/abs/2008.04259
|
540 |
+
|
541 |
+
:param mask: Real valued mask, typically of shape [B, C, T, F].
|
542 |
+
:param beta: Global gain factor.
|
543 |
+
:return:
|
544 |
+
"""
|
545 |
+
mask_sin = mask * torch.sin(np.pi * mask / 2)
|
546 |
+
mask_pf = (1 + beta) * mask / (1 + beta * mask.div(mask_sin.clamp_min(self.eps)).pow(2))
|
547 |
+
return mask_pf
|
548 |
+
|
549 |
+
def forward(self, spec: torch.Tensor, mask: torch.Tensor, atten_lim: Optional[torch.Tensor] = None) -> torch.Tensor:
|
550 |
+
# spec (real) [B, 1, T, F, 2], F: freq_bins
|
551 |
+
# mask (real): [B, 1, T, Fe], Fe: erb_bins
|
552 |
+
# atten_lim: [B]
|
553 |
+
if not self.training and self.post_filter:
|
554 |
+
mask = self.pf(mask)
|
555 |
+
if atten_lim is not None:
|
556 |
+
# dB to amplitude
|
557 |
+
atten_lim = 10 ** (-atten_lim / 20)
|
558 |
+
# Greater equal (__ge__) not implemented for TorchVersion.
|
559 |
+
if self.clamp_tensor:
|
560 |
+
# Supported by torch >= 1.9
|
561 |
+
mask = mask.clamp(min=atten_lim.view(-1, 1, 1, 1))
|
562 |
+
else:
|
563 |
+
m_out = []
|
564 |
+
for i in range(atten_lim.shape[0]):
|
565 |
+
m_out.append(mask[i].clamp_min(atten_lim[i].item()))
|
566 |
+
mask = torch.stack(m_out, dim=0)
|
567 |
+
mask = mask.matmul(self.erb_inv_fb) # [B, 1, T, F]
|
568 |
+
if not spec.is_complex():
|
569 |
+
mask = mask.unsqueeze(4)
|
570 |
+
return spec * mask
|
571 |
+
|
572 |
+
|
573 |
+
class DfDecoder(nn.Module):
|
574 |
+
def __init__(self,
|
575 |
+
config: DfNetConfig,
|
576 |
+
):
|
577 |
+
super().__init__()
|
578 |
+
layer_width = config.conv_channels
|
579 |
+
|
580 |
+
self.emb_in_dim = config.conv_channels * config.erb_bins // 4
|
581 |
+
self.emb_dim = config.df_hidden_dim
|
582 |
+
|
583 |
+
self.df_n_hidden = config.df_hidden_dim
|
584 |
+
self.df_n_layers = config.df_num_layers
|
585 |
+
self.df_order = config.df_order
|
586 |
+
self.df_bins = config.df_bins
|
587 |
+
self.df_out_ch = config.df_order * 2
|
588 |
+
|
589 |
+
self.df_convp = CausalConv2d(
|
590 |
+
layer_width,
|
591 |
+
self.df_out_ch,
|
592 |
+
fstride=1,
|
593 |
+
kernel_size=(config.df_pathway_kernel_size_t, 1),
|
594 |
+
separable=True,
|
595 |
+
bias=False,
|
596 |
+
)
|
597 |
+
self.df_gru = SqueezedGRU_S(
|
598 |
+
self.emb_in_dim,
|
599 |
+
self.emb_dim,
|
600 |
+
num_layers=self.df_n_layers,
|
601 |
+
batch_first=True,
|
602 |
+
skip_op="none",
|
603 |
+
activation_layer="relu",
|
604 |
+
)
|
605 |
+
|
606 |
+
if config.df_gru_skip == "none":
|
607 |
+
self.df_skip = None
|
608 |
+
elif config.df_gru_skip == "identity":
|
609 |
+
if config.emb_hidden_dim != config.df_hidden_dim:
|
610 |
+
raise AssertionError("Dimensions do not match")
|
611 |
+
self.df_skip = nn.Identity()
|
612 |
+
elif config.df_gru_skip == "grouped_linear":
|
613 |
+
self.df_skip = GroupedLinear(self.emb_in_dim, self.emb_dim, groups=config.df_decoder_linear_groups)
|
614 |
+
else:
|
615 |
+
raise NotImplementedError()
|
616 |
+
|
617 |
+
self.df_out: nn.Module
|
618 |
+
out_dim = self.df_bins * self.df_out_ch
|
619 |
+
|
620 |
+
self.df_out = nn.Sequential(
|
621 |
+
GroupedLinear(
|
622 |
+
input_size=self.df_n_hidden,
|
623 |
+
hidden_size=out_dim,
|
624 |
+
groups=config.df_decoder_linear_groups
|
625 |
+
),
|
626 |
+
nn.Tanh()
|
627 |
+
)
|
628 |
+
self.df_fc_a = nn.Sequential(
|
629 |
+
nn.Linear(self.df_n_hidden, 1),
|
630 |
+
nn.Sigmoid()
|
631 |
+
)
|
632 |
+
|
633 |
+
def forward(self, emb: torch.Tensor, c0: torch.Tensor) -> torch.Tensor:
|
634 |
+
b, t, _ = emb.shape
|
635 |
+
c, _ = self.df_gru(emb) # [B, T, H], H: df_n_hidden
|
636 |
+
if self.df_skip is not None:
|
637 |
+
c = c + self.df_skip(emb)
|
638 |
+
c0 = self.df_convp(c0).permute(0, 2, 3, 1) # [B, T, F, O*2], channels_last
|
639 |
+
c = self.df_out(c) # [B, T, F*O*2], O: df_order
|
640 |
+
c = c.view(b, t, self.df_bins, self.df_out_ch) + c0 # [B, T, F, O*2]
|
641 |
+
return c
|
642 |
+
|
643 |
+
|
644 |
+
class DfOutputReshapeMF(nn.Module):
|
645 |
+
"""Coefficients output reshape for multiframe/MultiFrameModule
|
646 |
+
|
647 |
+
Requires input of shape B, C, T, F, 2.
|
648 |
+
"""
|
649 |
+
|
650 |
+
def __init__(self, df_order: int, df_bins: int):
|
651 |
+
super().__init__()
|
652 |
+
self.df_order = df_order
|
653 |
+
self.df_bins = df_bins
|
654 |
+
|
655 |
+
def forward(self, coefs: torch.Tensor) -> torch.Tensor:
|
656 |
+
# [B, T, F, O*2] -> [B, O, T, F, 2]
|
657 |
+
new_shape = list(coefs.shape)
|
658 |
+
new_shape[-1] = -1
|
659 |
+
new_shape.append(2)
|
660 |
+
coefs = coefs.view(new_shape)
|
661 |
+
coefs = coefs.permute(0, 3, 1, 2, 4)
|
662 |
+
return coefs
|
663 |
+
|
664 |
+
|
665 |
+
class DfNet(nn.Module):
|
666 |
+
"""
|
667 |
+
DeepFilterNet: Perceptually Motivated Real-Time Speech Enhancement
|
668 |
+
https://arxiv.org/abs/2305.08227
|
669 |
+
|
670 | |
671 |
+
"""
|
672 |
+
def __init__(self,
|
673 |
+
config: DfNetConfig,
|
674 |
+
erb_fb: torch.FloatTensor,
|
675 |
+
erb_inv_fb: torch.FloatTensor,
|
676 |
+
run_df: bool = True,
|
677 |
+
train_mask: bool = True,
|
678 |
+
):
|
679 |
+
"""
|
680 |
+
:param erb_fb: erb filter bank.
|
681 |
+
"""
|
682 |
+
super(DfNet, self).__init__()
|
683 |
+
if config.erb_bins % 8 != 0:
|
684 |
+
raise AssertionError("erb_bins should be divisible by 8")
|
685 |
+
|
686 |
+
self.df_lookahead = config.df_lookahead
|
687 |
+
self.df_bins = config.df_bins
|
688 |
+
self.freq_bins: int = config.fft_size // 2 + 1
|
689 |
+
self.emb_dim: int = config.conv_channels * config.erb_bins
|
690 |
+
self.erb_bins: int = config.erb_bins
|
691 |
+
|
692 |
+
if config.conv_lookahead > 0:
|
693 |
+
if config.conv_lookahead < config.df_lookahead:
|
694 |
+
raise AssertionError
|
695 |
+
# for last 2 dim, pad (left, right, top, bottom).
|
696 |
+
self.pad_feat = nn.ConstantPad2d((0, 0, -config.conv_lookahead, config.conv_lookahead), 0.0)
|
697 |
+
else:
|
698 |
+
self.pad_feat = nn.Identity()
|
699 |
+
|
700 |
+
if config.df_lookahead > 0:
|
701 |
+
# for last 3 dim, pad (left, right, top, bottom, front, back).
|
702 |
+
self.pad_spec = nn.ConstantPad3d((0, 0, 0, 0, -config.df_lookahead, config.df_lookahead), 0.0)
|
703 |
+
else:
|
704 |
+
self.pad_spec = nn.Identity()
|
705 |
+
|
706 |
+
self.register_buffer("erb_fb", erb_fb)
|
707 |
+
|
708 |
+
self.enc = Encoder(config)
|
709 |
+
self.erb_dec = ErbDecoder(config)
|
710 |
+
self.mask = Mask(erb_inv_fb)
|
711 |
+
|
712 |
+
self.erb_inv_fb = erb_inv_fb
|
713 |
+
self.post_filter = config.mask_post_filter
|
714 |
+
self.post_filter_beta = config.post_filter_beta
|
715 |
+
|
716 |
+
self.df_order = config.df_order
|
717 |
+
self.df_op = MF.DF(num_freqs=config.df_bins, frame_size=config.df_order, lookahead=self.df_lookahead)
|
718 |
+
self.df_dec = DfDecoder(config)
|
719 |
+
self.df_out_transform = DfOutputReshapeMF(self.df_order, config.df_bins)
|
720 |
+
|
721 |
+
self.run_erb = config.df_bins + 1 < self.freq_bins
|
722 |
+
if not self.run_erb:
|
723 |
+
logger.warning("Running without ERB stage")
|
724 |
+
self.run_df = run_df
|
725 |
+
if not run_df:
|
726 |
+
logger.warning("Running without DF stage")
|
727 |
+
self.train_mask = train_mask
|
728 |
+
self.lsnr_dropout = config.lsnr_dropout
|
729 |
+
if config.df_n_iter != 1:
|
730 |
+
raise AssertionError
|
731 |
+
|
732 |
+
def forward1(
|
733 |
+
self,
|
734 |
+
spec: torch.Tensor,
|
735 |
+
feat_erb: torch.Tensor,
|
736 |
+
feat_spec: torch.Tensor, # Not used, take spec modified by mask instead
|
737 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
738 |
+
"""Forward method of DeepFilterNet2.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
spec (Tensor): Spectrum of shape [B, 1, T, F, 2]
|
742 |
+
feat_erb (Tensor): ERB features of shape [B, 1, T, E]
|
743 |
+
feat_spec (Tensor): Complex spectrogram features of shape [B, 1, T, F', 2]
|
744 |
+
|
745 |
+
Returns:
|
746 |
+
spec (Tensor): Enhanced spectrum of shape [B, 1, T, F, 2]
|
747 |
+
m (Tensor): ERB mask estimate of shape [B, 1, T, E]
|
748 |
+
lsnr (Tensor): Local SNR estimate of shape [B, T, 1]
|
749 |
+
"""
|
750 |
+
# feat_spec shape: [batch_size, 1, time_steps, freq_dim, 2]
|
751 |
+
feat_spec = feat_spec.squeeze(1).permute(0, 3, 1, 2)
|
752 |
+
# feat_spec shape: [batch_size, 2, time_steps, freq_dim]
|
753 |
+
|
754 |
+
# feat_erb shape: [batch_size, 1, time_steps, erb_bins]
|
755 |
+
# assert time_steps >= conv_lookahead.
|
756 |
+
feat_erb = self.pad_feat(feat_erb)
|
757 |
+
feat_spec = self.pad_feat(feat_spec)
|
758 |
+
e0, e1, e2, e3, emb, c0, lsnr, h = self.enc(feat_erb, feat_spec)
|
759 |
+
|
760 |
+
if self.lsnr_droput:
|
761 |
+
idcs = lsnr.squeeze() > -10.0
|
762 |
+
b, t = (spec.shape[0], spec.shape[2])
|
763 |
+
m = torch.zeros((b, 1, t, self.erb_bins), device=spec.device)
|
764 |
+
df_coefs = torch.zeros((b, t, self.nb_df, self.df_order * 2))
|
765 |
+
spec_m = spec.clone()
|
766 |
+
emb = emb[:, idcs]
|
767 |
+
e0 = e0[:, :, idcs]
|
768 |
+
e1 = e1[:, :, idcs]
|
769 |
+
e2 = e2[:, :, idcs]
|
770 |
+
e3 = e3[:, :, idcs]
|
771 |
+
c0 = c0[:, :, idcs]
|
772 |
+
|
773 |
+
if self.run_erb:
|
774 |
+
if self.lsnr_dropout:
|
775 |
+
m[:, :, idcs] = self.erb_dec(emb, e3, e2, e1, e0)
|
776 |
+
else:
|
777 |
+
m = self.erb_dec(emb, e3, e2, e1, e0)
|
778 |
+
spec_m = self.mask(spec, m)
|
779 |
+
else:
|
780 |
+
m = torch.zeros((), device=spec.device)
|
781 |
+
spec_m = torch.zeros_like(spec)
|
782 |
+
|
783 |
+
if self.run_df:
|
784 |
+
if self.lsnr_dropout:
|
785 |
+
df_coefs[:, idcs] = self.df_dec(emb, c0)
|
786 |
+
else:
|
787 |
+
df_coefs = self.df_dec(emb, c0)
|
788 |
+
df_coefs = self.df_out_transform(df_coefs)
|
789 |
+
spec_e = self.df_op(spec.clone(), df_coefs)
|
790 |
+
spec_e[..., self.df_bins:, :] = spec_m[..., self.df_bins:, :]
|
791 |
+
else:
|
792 |
+
df_coefs = torch.zeros((), device=spec.device)
|
793 |
+
spec_e = spec_m
|
794 |
+
|
795 |
+
if self.post_filter:
|
796 |
+
beta = self.post_filter_beta
|
797 |
+
eps = 1e-12
|
798 |
+
mask = (utils.as_complex(spec_e).abs() / utils.as_complex(spec).abs().add(eps)).clamp(eps, 1)
|
799 |
+
mask_sin = mask * torch.sin(PI * mask / 2).clamp_min(eps)
|
800 |
+
pf = (1 + beta) / (1 + beta * mask.div(mask_sin).pow(2))
|
801 |
+
spec_e = spec_e * pf.unsqueeze(-1)
|
802 |
+
|
803 |
+
return spec_e, m, lsnr, df_coefs
|
804 |
+
|
805 |
+
def forward(
|
806 |
+
self,
|
807 |
+
spec: torch.Tensor,
|
808 |
+
feat_erb: torch.Tensor,
|
809 |
+
feat_spec: torch.Tensor, # Not used, take spec modified by mask instead
|
810 |
+
erb_encoder_h: torch.Tensor = None,
|
811 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
812 |
+
# feat_spec shape: [batch_size, 1, time_steps, freq_dim, 2]
|
813 |
+
feat_spec = feat_spec.squeeze(1).permute(0, 3, 1, 2)
|
814 |
+
# feat_spec shape: [batch_size, 2, time_steps, freq_dim]
|
815 |
+
|
816 |
+
# feat_erb shape: [batch_size, 1, time_steps, erb_bins]
|
817 |
+
# assert time_steps >= conv_lookahead.
|
818 |
+
feat_erb = self.pad_feat(feat_erb)
|
819 |
+
feat_spec = self.pad_feat(feat_spec)
|
820 |
+
e0, e1, e2, e3, emb, c0, lsnr, erb_encoder_h = self.enc(feat_erb, feat_spec, erb_encoder_h)
|
821 |
+
|
822 |
+
m = self.erb_dec(emb, e3, e2, e1, e0)
|
823 |
+
spec_m = self.mask(spec, m)
|
824 |
+
# spec_e = spec_m
|
825 |
+
|
826 |
+
df_coefs = self.df_dec(emb, c0)
|
827 |
+
df_coefs = self.df_out_transform(df_coefs)
|
828 |
+
spec_e = self.df_op(spec.clone(), df_coefs)
|
829 |
+
spec_e[..., self.df_bins:, :] = spec_m[..., self.df_bins:, :]
|
830 |
+
|
831 |
+
return spec_e, m, lsnr, df_coefs, erb_encoder_h
|
832 |
+
|
833 |
+
|
834 |
+
if __name__ == "__main__":
|
835 |
+
pass
|
toolbox/torchaudio/models/dfnet3/multiframes.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
|
8 |
+
# From torchaudio
|
9 |
+
def _compute_mat_trace(input: torch.Tensor, dim1: int = -2, dim2: int = -1) -> torch.Tensor:
|
10 |
+
r"""Compute the trace of a Tensor along ``dim1`` and ``dim2`` dimensions.
|
11 |
+
Args:
|
12 |
+
input (torch.Tensor): Tensor of dimension `(..., channel, channel)`
|
13 |
+
dim1 (int, optional): the first dimension of the diagonal matrix
|
14 |
+
(Default: -1)
|
15 |
+
dim2 (int, optional): the second dimension of the diagonal matrix
|
16 |
+
(Default: -2)
|
17 |
+
Returns:
|
18 |
+
Tensor: trace of the input Tensor
|
19 |
+
"""
|
20 |
+
assert input.ndim >= 2, "The dimension of the tensor must be at least 2."
|
21 |
+
assert (
|
22 |
+
input.shape[dim1] == input.shape[dim2]
|
23 |
+
), "The size of ``dim1`` and ``dim2`` must be the same."
|
24 |
+
input = torch.diagonal(input, 0, dim1=dim1, dim2=dim2)
|
25 |
+
return input.sum(dim=-1)
|
26 |
+
|
27 |
+
|
28 |
+
def _tik_reg(mat: torch.Tensor, reg: float = 1e-7, eps: float = 1e-8) -> torch.Tensor:
|
29 |
+
"""Perform Tikhonov regularization (only modifying real part).
|
30 |
+
Args:
|
31 |
+
mat (torch.Tensor): input matrix (..., channel, channel)
|
32 |
+
reg (float, optional): regularization factor (Default: 1e-8)
|
33 |
+
eps (float, optional): a value to avoid the correlation matrix is all-zero (Default: ``1e-8``)
|
34 |
+
Returns:
|
35 |
+
Tensor: regularized matrix (..., channel, channel)
|
36 |
+
"""
|
37 |
+
# Add eps
|
38 |
+
C = mat.size(-1)
|
39 |
+
eye = torch.eye(C, dtype=mat.dtype, device=mat.device)
|
40 |
+
epsilon = _compute_mat_trace(mat).real[..., None, None] * reg
|
41 |
+
# in case that correlation_matrix is all-zero
|
42 |
+
epsilon = epsilon + eps
|
43 |
+
mat = mat + epsilon * eye[..., :, :]
|
44 |
+
return mat
|
45 |
+
|
46 |
+
|
47 |
+
class MultiFrameModule(nn.Module):
|
48 |
+
"""
|
49 |
+
Multi-frame speech enhancement modules.
|
50 |
+
|
51 |
+
Signal model and notation:
|
52 |
+
Noisy: `x = s + n`
|
53 |
+
Enhanced: `y = f(x)`
|
54 |
+
Objective: `min ||s - y||`
|
55 |
+
|
56 |
+
PSD: Power spectral density, notated eg. as `Rxx` for noisy PSD.
|
57 |
+
IFC: Inter-frame correlation vector: PSD*u, u: selection vector. Notated as `rxx`
|
58 |
+
RTF: Relative transfere function, also called steering vector.
|
59 |
+
"""
|
60 |
+
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0, real: bool = False):
|
61 |
+
"""
|
62 |
+
Multi-Frame filtering module.
|
63 |
+
|
64 |
+
:param num_freqs: int. Number of frequency bins used for filtering.
|
65 |
+
:param frame_size: int. Frame size in FD domain.
|
66 |
+
:param lookahead: int. Lookahead, may be used to select the output time step.
|
67 |
+
Note: This module does not add additional padding according to lookahead!
|
68 |
+
:param real:
|
69 |
+
"""
|
70 |
+
super().__init__()
|
71 |
+
self.num_freqs = num_freqs
|
72 |
+
self.frame_size = frame_size
|
73 |
+
self.real = real
|
74 |
+
if real:
|
75 |
+
self.pad = nn.ConstantPad3d((0, 0, 0, 0, frame_size - 1 - lookahead, lookahead), 0.0)
|
76 |
+
else:
|
77 |
+
self.pad = nn.ConstantPad2d((0, 0, frame_size - 1 - lookahead, lookahead), 0.0)
|
78 |
+
self.need_unfold = frame_size > 1
|
79 |
+
self.lookahead = lookahead
|
80 |
+
|
81 |
+
def spec_unfold_real(self, spec: torch.Tensor):
|
82 |
+
if self.need_unfold:
|
83 |
+
spec = self.pad(spec).unfold(-3, self.frame_size, 1)
|
84 |
+
return spec.permute(0, 1, 5, 2, 3, 4)
|
85 |
+
# return as_windowed(self.pad(spec), self.frame_size, 1, dim=-3)
|
86 |
+
return spec.unsqueeze(-1)
|
87 |
+
|
88 |
+
def spec_unfold(self, spec: torch.Tensor):
|
89 |
+
"""Pads and unfolds the spectrogram according to frame_size.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
spec (complex Tensor): Spectrogram of shape [B, C, T, F]
|
93 |
+
Returns:
|
94 |
+
spec (Tensor): Unfolded spectrogram of shape [B, C, T, F, N], where N: frame_size.
|
95 |
+
"""
|
96 |
+
if self.need_unfold:
|
97 |
+
return self.pad(spec).unfold(2, self.frame_size, 1)
|
98 |
+
return spec.unsqueeze(-1)
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def solve(Rxx, rss, diag_eps: float = 1e-8, eps: float = 1e-7) -> torch.Tensor:
|
102 |
+
return torch.einsum(
|
103 |
+
"...nm,...m->...n", torch.inverse(_tik_reg(Rxx, diag_eps, eps)), rss
|
104 |
+
) # [T, F, N]
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def apply_coefs(spec: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor:
|
108 |
+
# spec: [B, C, T, F, N]
|
109 |
+
# coefs: [B, C, T, F, N]
|
110 |
+
return torch.einsum("...n,...n->...", spec, coefs)
|
111 |
+
|
112 |
+
|
113 |
+
class DF(MultiFrameModule):
|
114 |
+
"""Deep Filtering."""
|
115 |
+
|
116 |
+
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0, conj: bool = False):
|
117 |
+
super().__init__(num_freqs, frame_size, lookahead)
|
118 |
+
self.conj: bool = conj
|
119 |
+
|
120 |
+
def forward(self, spec: torch.Tensor, coefs: torch.Tensor):
|
121 |
+
spec_u = self.spec_unfold(torch.view_as_complex(spec))
|
122 |
+
coefs = torch.view_as_complex(coefs)
|
123 |
+
spec_f = spec_u.narrow(-2, 0, self.num_freqs)
|
124 |
+
coefs = coefs.view(coefs.shape[0], -1, self.frame_size, *coefs.shape[2:])
|
125 |
+
if self.conj:
|
126 |
+
coefs = coefs.conj()
|
127 |
+
spec_f = self.df(spec_f, coefs)
|
128 |
+
if self.training:
|
129 |
+
spec = spec.clone()
|
130 |
+
spec[..., : self.num_freqs, :] = torch.view_as_real(spec_f)
|
131 |
+
return spec
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def df(spec: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor:
|
135 |
+
"""
|
136 |
+
Deep filter implementation using `torch.einsum`. Requires unfolded spectrogram.
|
137 |
+
:param spec: (complex Tensor). Spectrogram of shape [B, C, T, F, N].
|
138 |
+
:param coefs: (complex Tensor). Coefficients of shape [B, C, N, T, F].
|
139 |
+
:return: (complex Tensor). Spectrogram of shape [B, C, T, F].
|
140 |
+
"""
|
141 |
+
return torch.einsum("...tfn,...ntf->...tf", spec, coefs)
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == '__main__':
|
145 |
+
pass
|
toolbox/torchaudio/models/dfnet3/utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def as_complex(x: torch.Tensor):
|
7 |
+
if torch.is_complex(x):
|
8 |
+
return x
|
9 |
+
if x.shape[-1] != 2:
|
10 |
+
raise ValueError(f"Last dimension need to be of length 2 (re + im), but got {x.shape}")
|
11 |
+
if x.stride(-1) != 1:
|
12 |
+
x = x.contiguous()
|
13 |
+
return torch.view_as_complex(x)
|
14 |
+
|
15 |
+
|
16 |
+
if __name__ == '__main__':
|
17 |
+
pass
|
toolbox/torchaudio/models/ehnet/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/ehnet/modeling_ehnet.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://arxiv.org/abs/1805.00579
|
5 |
+
|
6 |
+
https://github.com/haoxiangsnr/A-Convolutional-Recurrent-Neural-Network-for-Real-Time-Speech-Enhancement
|
7 |
+
|
8 |
+
"""
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
|
12 |
+
|
13 |
+
class CausalConvBlock(nn.Module):
|
14 |
+
def __init__(self, in_channels, out_channels):
|
15 |
+
super().__init__()
|
16 |
+
self.conv = nn.Conv2d(
|
17 |
+
in_channels=in_channels,
|
18 |
+
out_channels=out_channels,
|
19 |
+
kernel_size=(3, 2),
|
20 |
+
stride=(2, 1),
|
21 |
+
padding=(0, 1)
|
22 |
+
)
|
23 |
+
self.norm = nn.BatchNorm2d(num_features=out_channels)
|
24 |
+
self.activation = nn.ELU()
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
"""
|
28 |
+
2D Causal convolution.
|
29 |
+
Args:
|
30 |
+
x: [B, C, F, T]
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
[B, C, F, T]
|
34 |
+
"""
|
35 |
+
x = self.conv(x)
|
36 |
+
x = x[:, :, :, :-1] # chomp size
|
37 |
+
x = self.norm(x)
|
38 |
+
x = self.activation(x)
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
class CausalTransConvBlock(nn.Module):
|
43 |
+
def __init__(self, in_channels, out_channels, is_last=False, output_padding=(0, 0)):
|
44 |
+
super().__init__()
|
45 |
+
self.conv = nn.ConvTranspose2d(
|
46 |
+
in_channels=in_channels,
|
47 |
+
out_channels=out_channels,
|
48 |
+
kernel_size=(3, 2),
|
49 |
+
stride=(2, 1),
|
50 |
+
output_padding=output_padding
|
51 |
+
)
|
52 |
+
self.norm = nn.BatchNorm2d(num_features=out_channels)
|
53 |
+
if is_last:
|
54 |
+
self.activation = nn.ReLU()
|
55 |
+
else:
|
56 |
+
self.activation = nn.ELU()
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
"""
|
60 |
+
2D Causal convolution.
|
61 |
+
Args:
|
62 |
+
x: [B, C, F, T]
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
[B, C, F, T]
|
66 |
+
"""
|
67 |
+
x = self.conv(x)
|
68 |
+
x = x[:, :, :, :-1] # chomp size
|
69 |
+
x = self.norm(x)
|
70 |
+
x = self.activation(x)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
class CRN(nn.Module):
|
76 |
+
"""
|
77 |
+
Input: [batch size, channels=1, T, n_fft]
|
78 |
+
Output: [batch size, T, n_fft]
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(self):
|
82 |
+
super(CRN, self).__init__()
|
83 |
+
# Encoder
|
84 |
+
self.conv_block_1 = CausalConvBlock(1, 16)
|
85 |
+
self.conv_block_2 = CausalConvBlock(16, 32)
|
86 |
+
self.conv_block_3 = CausalConvBlock(32, 64)
|
87 |
+
self.conv_block_4 = CausalConvBlock(64, 128)
|
88 |
+
self.conv_block_5 = CausalConvBlock(128, 256)
|
89 |
+
|
90 |
+
# LSTM
|
91 |
+
self.lstm_layer = nn.LSTM(input_size=1024, hidden_size=1024, num_layers=2, batch_first=True)
|
92 |
+
|
93 |
+
self.tran_conv_block_1 = CausalTransConvBlock(256 + 256, 128)
|
94 |
+
self.tran_conv_block_2 = CausalTransConvBlock(128 + 128, 64)
|
95 |
+
self.tran_conv_block_3 = CausalTransConvBlock(64 + 64, 32)
|
96 |
+
self.tran_conv_block_4 = CausalTransConvBlock(32 + 32, 16, output_padding=(1, 0))
|
97 |
+
self.tran_conv_block_5 = CausalTransConvBlock(16 + 16, 1, is_last=True)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
self.lstm_layer.flatten_parameters()
|
101 |
+
|
102 |
+
e_1 = self.conv_block_1(x)
|
103 |
+
e_2 = self.conv_block_2(e_1)
|
104 |
+
e_3 = self.conv_block_3(e_2)
|
105 |
+
e_4 = self.conv_block_4(e_3)
|
106 |
+
e_5 = self.conv_block_5(e_4) # [2, 256, 4, 200]
|
107 |
+
|
108 |
+
batch_size, n_channels, n_f_bins, n_frame_size = e_5.shape
|
109 |
+
|
110 |
+
# [2, 256, 4, 200] = [2, 1024, 200] => [2, 200, 1024]
|
111 |
+
lstm_in = e_5.reshape(batch_size, n_channels * n_f_bins, n_frame_size).permute(0, 2, 1)
|
112 |
+
lstm_out, _ = self.lstm_layer(lstm_in) # [2, 200, 1024]
|
113 |
+
lstm_out = lstm_out.permute(0, 2, 1).reshape(batch_size, n_channels, n_f_bins, n_frame_size) # [2, 256, 4, 200]
|
114 |
+
|
115 |
+
d_1 = self.tran_conv_block_1(torch.cat((lstm_out, e_5), 1))
|
116 |
+
d_2 = self.tran_conv_block_2(torch.cat((d_1, e_4), 1))
|
117 |
+
d_3 = self.tran_conv_block_3(torch.cat((d_2, e_3), 1))
|
118 |
+
d_4 = self.tran_conv_block_4(torch.cat((d_3, e_2), 1))
|
119 |
+
d_5 = self.tran_conv_block_5(torch.cat((d_4, e_1), 1))
|
120 |
+
|
121 |
+
return d_5
|
122 |
+
|
123 |
+
|
124 |
+
def main():
|
125 |
+
layer = CRN()
|
126 |
+
a = torch.rand(2, 1, 161, 200)
|
127 |
+
print(layer(a).shape)
|
128 |
+
return
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == '__main__':
|
132 |
+
main()
|
toolbox/torchaudio/models/percepnet/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/percepnet/modeling_percetnet.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/jzi040941/PercepNet
|
5 |
+
|
6 |
+
https://arxiv.org/abs/2008.04259
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
if __name__ == '__main__':
|
11 |
+
pass
|