Files changed (1) hide show
  1. about.md +203 -168
about.md CHANGED
@@ -1,16 +1,18 @@
1
  ## 📄 About
2
  Natural and efficient TTS in Catalan: using Matcha-TTS with the Catalan language.
3
 
4
- Here you'll be able to find all the information regarding our model, which has been trained with the use of deep learning. If you want specific information on how to train the model you can find it [here](https://huggingface.co/BSC-LT/matcha-tts-cat-multispeaker). The code we've used is also on Github [here](https://github.com/langtech-bsc/Matcha-TTS/tree/dev-cat).
5
 
6
  ## Table of Contents
7
  <details>
8
  <summary>Click to expand</summary>
9
 
10
  - [General Model Description](#general-model-description)
11
- - [Adaptation to Catalan](#adaptation-to-catalan)
12
  - [Intended Uses and Limitations](#intended-uses-and-limitations)
13
  - [Samples](#samples)
 
 
 
14
  - [Citation](#citation)
15
  - [Additional Information](#additional-information)
16
 
@@ -18,6 +20,194 @@ Here you'll be able to find all the information regarding our model, which has b
18
 
19
  ## General Model Description
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  **Matcha-TTS** is an encoder-decoder architecture designed for fast acoustic modelling in TTS.
22
  On the one hand, the encoder part is based on a text encoder and a phoneme duration prediction. Together, they predict averaged acoustic features.
23
  On the other hand, the decoder has essentially a U-Net backbone inspired by [Grad-TTS](https://arxiv.org/pdf/2105.06337.pdf), which is based on the Transformer architecture.
@@ -34,6 +224,8 @@ The original Matcha-TTS model excels in English, but to bring its capabilities t
34
 
35
  * A studio-recorded dataset of central catalan, which will soon be published.
36
 
 
 
37
  This soon to be published dataset also included recordings of three different dialects:
38
 
39
  * Valencian
@@ -46,180 +238,23 @@ With a male and a female speaker for each dialect.
46
 
47
  Then, through fine-tuning for these specific Catalan dialects, the model adapted to regional variations in pronunciation and cadence. This meticulous approach ensures that the model reflects the linguistic richness and cultural diversity within the Catalan-speaking community, offering seamless communication in previously underserved dialects.
48
 
49
- In addition to training the Matcha-TTS model for Catalan, integrating the eSpeak phonemizer played a crucial role in enhancing the naturalness and accuracy of generated speech. A TTS (Text-to-Speech) system comprises several components, each contributing to the overall quality of synthesized speech. The first component involves text preprocessing, where the input text undergoes normalization and linguistic analysis to identify words, punctuation, and linguistic features. Next, the text is converted into phonemes, the smallest units of sound in a language, through a process called phonemization. This step is where the eSpeak phonemizer shines, as it accurately converts Catalan text into phonetic representations, capturing the subtle nuances of pronunciation specific to Catalan. You can find the espeak version we used [here](https://github.com/projecte-aina/espeak-ng/tree/dev-ca).
50
 
51
  After phonemization, the phonemes are passed to the synthesis component, where they are transformed into audible speech. Here, the Matcha-TTS model takes center stage, generating high-quality speech output based on the phonetic input. The model's training, fine-tuning, and adaptation to Catalan ensure that the synthesized speech retains the natural rhythm, intonation, and pronunciation patterns of the language, thereby enhancing the overall user experience.
52
 
53
  Finally, the synthesized speech undergoes post-processing, where prosodic features such as pitch, duration, and emphasis are applied to further refine the output and make it sound more natural and expressive. By integrating the eSpeak phonemizer into the TTS pipeline and adapting it for Catalan, alongside training the Matcha-TTS model for the language, we have created a comprehensive and effective system for generating high-quality Catalan speech. This combination of advanced techniques and meticulous attention to linguistic detail is instrumental in bridging language barriers and facilitating communication for Catalan speakers worldwide.
54
 
55
- ## Intended Uses and Limitations
56
-
57
- This model is intended to serve as an acoustic feature generator for multispeaker text-to-speech systems for the Catalan language.
58
- It has been finetuned using a Catalan phonemizer, therefore if the model is used for other languages it may will not produce intelligible samples after mapping
59
- its output into a speech waveform.
60
-
61
- The quality of the samples can vary depending on the speaker.
62
- This may be due to the sensitivity of the model in learning specific frequencies and also due to the quality of samples for each speaker.
63
-
64
-
65
-
66
-
67
- ## Samples
68
- * Female samples
69
- <div class="table-wrapper">
70
- <table class="tg">
71
- <thead>
72
- <tr>
73
- <th class="tg-0pky">Valencian</td>
74
- <th class="tg-0pky">Occidental</td>
75
- <th class="tg-0pky">Balear</td>
76
- <tr>
77
- <thead>
78
- <tbody>
79
- <tr>
80
- <td>
81
- <audio controls="" preload="none">
82
- audio not supported
83
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk1/0.wav" type="audio/wav">
84
- </audio>
85
- </td>
86
- <td>
87
- <audio controls="" preload="none">
88
- audio not supported
89
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk1/0.wav" type="audio/wav"">
90
- </audio>
91
- </td>
92
- <td>
93
- <audio controls="" preload="none">
94
- audio not supported
95
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk1/0.wav" type="audio/wav">
96
- </audio>
97
- </td>
98
- </tr>
99
- <tr>
100
- <td>
101
- <audio controls="" preload="none">
102
- audio not supported
103
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk1/1.wav" type="audio/wav">
104
- </audio>
105
- </td>
106
- <td>
107
- <audio controls="" preload="none">
108
- audio not supported
109
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk1/1.wav" type="audio/wav">
110
- </audio>
111
- </td>
112
- <td>
113
- <audio controls="" preload="none">
114
- audio not supported
115
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk1/1.wav" type="audio/wav">
116
- </audio>
117
- </td>
118
- </tr>
119
- <tr>
120
- <td>
121
- <audio controls="" preload="none">
122
- audio not supported
123
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk1/2.wav" type="audio/wav">
124
- </audio>
125
- </td>
126
- <td>
127
- <audio controls="" preload="none">
128
- audio not supported
129
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk1/2.wav" type="audio/wav">
130
- </audio>
131
- </td>
132
- <td>
133
- <audio controls="" preload="none">
134
- audio not supported
135
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk1/2.wav" type="audio/wav">
136
- </audio>
137
- </td>
138
- </tr>
139
- </tbody>
140
- </table>
141
- </div>
142
-
143
- * Male samples:
144
-
145
- <div class="table-wrapper">
146
- <table class="tg">
147
- <thead>
148
- <tr>
149
- <th class="tg-0pky">Valencian</td>
150
- <th class="tg-0pky">Occidental</td>
151
- <th class="tg-0pky">Balear</td>
152
- <tr>
153
- <thead>
154
- <tbody>
155
- <tr>
156
- <td>
157
- <audio controls="" preload="none" style="width: 200px">
158
- audio not supported
159
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk0/0.wav" type="audio/wav">
160
- </audio>
161
- </td>
162
- <td>
163
- <audio controls="" preload="none" style="width: 200px">
164
- audio not supported
165
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk0/0.wav" type="audio/wav"">
166
- </audio>
167
- </td>
168
- <td>
169
- <audio controls="" preload="none" style="width: 200px">
170
- audio not supported
171
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk0/0.wav" type="audio/wav">
172
- </audio>
173
- </td>
174
- </tr>
175
- <tr>
176
- <td>
177
- <audio controls="" preload="none" style="width: 200px">
178
- audio not supported
179
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk0/1.wav" type="audio/wav">
180
- </audio>
181
- </td>
182
- <td>
183
- <audio controls="" preload="none" style="width: 200px">
184
- audio not supported
185
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk0/1.wav" type="audio/wav">
186
- </audio>
187
- </td>
188
- <td>
189
- <audio controls="" preload="none" style="width: 200px">
190
- audio not supported
191
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk0/1.wav" type="audio/wav">
192
- </audio>
193
- </td>
194
- </tr>
195
- <tr>
196
- <td>
197
- <audio controls="" preload="none" style="width: 200px">
198
- audio not supported
199
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk0/2.wav" type="audio/wav">
200
- </audio>
201
- </td>
202
- <td>
203
- <audio controls="" preload="none" style="width: 200px">
204
- audio not supported
205
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk0/2.wav" type="audio/wav">
206
- </audio>
207
- </td>
208
- <td>
209
- <audio controls="" preload="none" style="width: 200px">
210
- audio not supported
211
- <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk0/2.wav" type="audio/wav">
212
- </audio>
213
- </td>
214
- </tr>
215
- </tbody>
216
- </table>
217
- </div>
218
-
219
  ## Citation
220
 
221
  If this code contributes to your research, please cite the work:
222
 
 
 
 
 
 
 
 
223
  ```
224
  @misc{mehta2024matchatts,
225
  title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
@@ -246,4 +281,4 @@ Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center
246
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
247
 
248
  ### Funding
249
- This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
 
1
  ## 📄 About
2
  Natural and efficient TTS in Catalan: using Matcha-TTS with the Catalan language.
3
 
4
+ Here you'll be able to find all the information regarding our models Matxa 🍵 and alVoCat 🥑 , which have been trained with the use of deep learning. If you want specific information on how to train these model you can find it [here](https://huggingface.co/BSC-LT/matcha-tts-cat-multispeaker) and [here](https://huggingface.co/BSC-LT/vocos-mel-22khz-cat) respectively. The code we've used is also on Github [here](https://github.com/langtech-bsc/Matcha-TTS/tree/dev-cat).
5
 
6
  ## Table of Contents
7
  <details>
8
  <summary>Click to expand</summary>
9
 
10
  - [General Model Description](#general-model-description)
 
11
  - [Intended Uses and Limitations](#intended-uses-and-limitations)
12
  - [Samples](#samples)
13
+ - [Main components](#main-components)
14
+ - [The model in detail](#the-model-in-detail)
15
+ - [Adaptation to Catalan](#adaptation-to-catalan)
16
  - [Citation](#citation)
17
  - [Additional Information](#additional-information)
18
 
 
20
 
21
  ## General Model Description
22
 
23
+ The significance of open-source text-to-speech (TTS) technologies for minority languages cannot be overstated. These technologies democratize access to TTS solutions by providing a framework for communities to develop and adapt models according to their linguistic needs. This is why we have developed different open-source TTS solutions in Catalan, using an ensemble of technologies.
24
+
25
+ Firstly, we created a [TTS model for central Catalan](https://huggingface.co/BSC-LT/matcha-tts-cat-multispeaker) by fine-tuning the Matcha-TTS English model. Matcha-TTS is a state-of-the-art model that employs deep learning, a form of AI, to train models that replicate human speech patterns, allowing it to generate lifelike synthetic voices from written text. After that, we fine-tuned this Catalan central model for three other Catalan dialects:
26
+
27
+ * Balear
28
+ * North-Occidental
29
+ * Valencian
30
+
31
+
32
+ ## Intended Uses and Limitations
33
+
34
+ This model is intended to serve as an acoustic feature generator for multispeaker text-to-speech systems for the Catalan language.
35
+ It has been finetuned using a Catalan phonemizer, therefore if the model is used for other languages it may will not produce intelligible samples after mapping
36
+ its output into a speech waveform.
37
+
38
+ The quality of the samples can vary depending on the speaker.
39
+ This may be due to the sensitivity of the model in learning specific frequencies and also due to the quality of samples for each speaker.
40
+
41
+ ## Samples
42
+ * Female samples
43
+
44
+ <table style="font-size:16px">
45
+ <col width="205">
46
+ <col width="205">
47
+ <td>Valencian</td>
48
+ <td>Occidental</td>
49
+ <td>Balear</td>
50
+ <tbody
51
+ <table>
52
+ <tbody>
53
+ <tr>
54
+ <td>
55
+ <audio controls="" preload="none" style="width: 200px">
56
+ audio not supported
57
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk1/0.wav" type="audio/wav">
58
+ </audio>
59
+ </td>
60
+ <td>
61
+ <audio controls="" preload="none" style="width: 200px">
62
+ audio not supported
63
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk1/0.wav" type="audio/wav"">
64
+ </audio>
65
+ </td>
66
+ <td>
67
+ <audio controls="" preload="none" style="width: 200px">
68
+ audio not supported
69
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk1/0.wav" type="audio/wav">
70
+ </audio>
71
+ </td>
72
+ </tr>
73
+ <tr>
74
+ <td>
75
+ <audio controls="" preload="none" style="width: 200px">
76
+ audio not supported
77
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk1/1.wav" type="audio/wav">
78
+ </audio>
79
+ </td>
80
+ <td>
81
+ <audio controls="" preload="none" style="width: 200px">
82
+ audio not supported
83
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk1/1.wav" type="audio/wav">
84
+ </audio>
85
+ </td>
86
+ <td>
87
+ <audio controls="" preload="none" style="width: 200px">
88
+ audio not supported
89
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk1/1.wav" type="audio/wav">
90
+ </audio>
91
+ </td>
92
+ </tr>
93
+ <tr>
94
+ <td>
95
+ <audio controls="" preload="none" style="width: 200px">
96
+ audio not supported
97
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk1/2.wav" type="audio/wav">
98
+ </audio>
99
+ </td>
100
+ <td>
101
+ <audio controls="" preload="none" style="width: 200px">
102
+ audio not supported
103
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk1/2.wav" type="audio/wav">
104
+ </audio>
105
+ </td>
106
+ <td>
107
+ <audio controls="" preload="none" style="width: 200px">
108
+ audio not supported
109
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk1/2.wav" type="audio/wav">
110
+ </audio>
111
+ </td>
112
+ </tr>
113
+ </tbody>
114
+ </table>
115
+
116
+ * Male samples:
117
+
118
+ <table style="font-size:16px">
119
+ <col width="205">
120
+ <col width="205">
121
+ <thead>
122
+ <tr>
123
+ <td>Valencian</td>
124
+ <td>Occidental</td>
125
+ <td>Balear</td>
126
+ </tr>
127
+ </thead>
128
+ <tbody
129
+ <table>
130
+ <tbody>
131
+ <tr>
132
+ <td>
133
+ <audio controls="" preload="none" style="width: 200px">
134
+ audio not supported
135
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk0/0.wav" type="audio/wav">
136
+ </audio>
137
+ </td>
138
+ <td>
139
+ <audio controls="" preload="none" style="width: 200px">
140
+ audio not supported
141
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk0/0.wav" type="audio/wav"">
142
+ </audio>
143
+ </td>
144
+ <td>
145
+ <audio controls="" preload="none" style="width: 200px">
146
+ audio not supported
147
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk0/0.wav" type="audio/wav">
148
+ </audio>
149
+ </td>
150
+ </tr>
151
+ <tr>
152
+ <td>
153
+ <audio controls="" preload="none" style="width: 200px">
154
+ audio not supported
155
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk0/1.wav" type="audio/wav">
156
+ </audio>
157
+ </td>
158
+ <td>
159
+ <audio controls="" preload="none" style="width: 200px">
160
+ audio not supported
161
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk0/1.wav" type="audio/wav">
162
+ </audio>
163
+ </td>
164
+ <td>
165
+ <audio controls="" preload="none" style="width: 200px">
166
+ audio not supported
167
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk0/1.wav" type="audio/wav">
168
+ </audio>
169
+ </td>
170
+ </tr>
171
+ <tr>
172
+ <td>
173
+ <audio controls="" preload="none" style="width: 200px">
174
+ audio not supported
175
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/valencia/spk0/2.wav" type="audio/wav">
176
+ </audio>
177
+ </td>
178
+ <td>
179
+ <audio controls="" preload="none" style="width: 200px">
180
+ audio not supported
181
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/occidental/spk0/2.wav" type="audio/wav">
182
+ </audio>
183
+ </td>
184
+ <td>
185
+ <audio controls="" preload="none" style="width: 200px">
186
+ audio not supported
187
+ <source src="https://github.com/mllopartbsc/assets/raw/c6a393237e712851dd7cc7d10c70dde29d3412ac/matcha_tts_catalan/balear/spk0/2.wav" type="audio/wav">
188
+ </audio>
189
+ </td>
190
+ </tr>
191
+ </tbody>
192
+ </table>
193
+
194
+ ## Main components
195
+
196
+ Our text-to-speech model tailored for Catalan employs a multi-step process to convert written text into spoken words with accurate pronunciation. These are the steps:
197
+
198
+ 1- Initially, the model analyzes the input text, breaking it down into smaller linguistic units such as words and sentences while identifying any special characters. It then utilizes our version of eSpeak, a speech phonemizer, to generate phonemes based on the Catalan language's phonetic rules. For each Catalan accent, certain specifically adapted eSpeak rules apply.
199
+
200
+ 2- The matcha-TTS model converts these phonemes into a mel spectrogram, a visual representation of the spectrum of frequencies of a sound over time.
201
+
202
+ 3- This spectrogram is then fed into [our adaptation of the Vocos vocoder](https://huggingface.co/BSC-LT/vocos-mel-22khz-cat), which synthesizes the speech waveform.
203
+
204
+ By employing this series of steps, the TTS model ensures accurate pronunciation and natural-sounding Catalan speech output adapted to the nuances of the language. The computing of these steps was performed by Marenostrum 5 from the Barcelona Supercomputing Center, and Finisterrae III from CESGA.
205
+
206
+ Together, these technologies form a comprehensive TTS solution tailored to the needs of Catalan speakers, exemplifying the power of open-source initiatives in advancing linguistic diversity and inclusivity.
207
+
208
+
209
+ ## The model in detail
210
+
211
  **Matcha-TTS** is an encoder-decoder architecture designed for fast acoustic modelling in TTS.
212
  On the one hand, the encoder part is based on a text encoder and a phoneme duration prediction. Together, they predict averaged acoustic features.
213
  On the other hand, the decoder has essentially a U-Net backbone inspired by [Grad-TTS](https://arxiv.org/pdf/2105.06337.pdf), which is based on the Transformer architecture.
 
224
 
225
  * A studio-recorded dataset of central catalan, which will soon be published.
226
 
227
+ * [Our version of the Festcat dataset.](https://huggingface.co/datasets/projecte-aina/festcat_trimmed_denoised)
228
+
229
  This soon to be published dataset also included recordings of three different dialects:
230
 
231
  * Valencian
 
238
 
239
  Then, through fine-tuning for these specific Catalan dialects, the model adapted to regional variations in pronunciation and cadence. This meticulous approach ensures that the model reflects the linguistic richness and cultural diversity within the Catalan-speaking community, offering seamless communication in previously underserved dialects.
240
 
241
+ In addition to training the Matcha-TTS model for Catalan, integrating the eSpeak phonemizer played a crucial role in enhancing the naturalness and accuracy of generated speech. A TTS (Text-to-Speech) system comprises several components, each contributing to the overall quality of synthesized speech. The first component involves text preprocessing, where the input text undergoes normalization and linguistic analysis to identify words, punctuation, and linguistic features. Next, the text is converted into phonemes, the smallest units of sound in a language, through a process called phonemization. This step is where the eSpeak phonemizer shines, as it accurately converts Catalan text into phonetic representations, capturing the subtle nuances of pronunciation specific to Catalan. You can find the eSpeak version we used [here](https://github.com/projecte-aina/espeak-ng/tree/dev-ca).
242
 
243
  After phonemization, the phonemes are passed to the synthesis component, where they are transformed into audible speech. Here, the Matcha-TTS model takes center stage, generating high-quality speech output based on the phonetic input. The model's training, fine-tuning, and adaptation to Catalan ensure that the synthesized speech retains the natural rhythm, intonation, and pronunciation patterns of the language, thereby enhancing the overall user experience.
244
 
245
  Finally, the synthesized speech undergoes post-processing, where prosodic features such as pitch, duration, and emphasis are applied to further refine the output and make it sound more natural and expressive. By integrating the eSpeak phonemizer into the TTS pipeline and adapting it for Catalan, alongside training the Matcha-TTS model for the language, we have created a comprehensive and effective system for generating high-quality Catalan speech. This combination of advanced techniques and meticulous attention to linguistic detail is instrumental in bridging language barriers and facilitating communication for Catalan speakers worldwide.
246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247
  ## Citation
248
 
249
  If this code contributes to your research, please cite the work:
250
 
251
+ ```
252
+ @misc{LTU2024,
253
+ title={Natural and efficient TTS in Catalan: using Matcha-TTS with the Catalan language},
254
+ author={The Language Technologies Unit from Barcelona Supercomputing Center},
255
+ year={2024},
256
+ }
257
+ ```
258
  ```
259
  @misc{mehta2024matchatts,
260
  title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
 
281
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
282
 
283
  ### Funding
284
+ This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).