File size: 8,936 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "984169ca",
   "metadata": {},
   "source": [
    "# Question Answering Benchmarking: Paul Graham Essay\n",
    "\n",
    "Here we go over how to benchmark performance on a question answering task over a Paul Graham essay.\n",
    "\n",
    "It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "3bd13ab7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Comment this out if you are NOT using tracing\n",
    "import os\n",
    "os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8a16b75d",
   "metadata": {},
   "source": [
    "## Loading the data\n",
    "First, let's load the data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5b2d5e98",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--question-answering-paul-graham-76e8f711e038d742/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9264acfe710b4faabf060f0fcf4f7308",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from langchain.evaluation.loading import load_dataset\n",
    "dataset = load_dataset(\"question-answering-paul-graham\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4ab6a716",
   "metadata": {},
   "source": [
    "## Setting up a chain\n",
    "Now we need to create some pipelines for doing question answering. Step one in that is creating an index over the data in question."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "c18680b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.document_loaders import TextLoader\n",
    "loader = TextLoader(\"../../modules/paul_graham_essay.txt\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "7f0de2b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.indexes import VectorstoreIndexCreator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "ef84ff99",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running Chroma using direct local API.\n",
      "Using DuckDB in-memory for database. Data will be transient.\n"
     ]
    }
   ],
   "source": [
    "vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f0b5d8f6",
   "metadata": {},
   "source": [
    "Now we can create a question answering chain."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8843cb0c",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import RetrievalQA\n",
    "from langchain.llms import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "573719a0",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type=\"stuff\", retriever=vectorstore.as_retriever(), input_key=\"question\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "53b5aa23",
   "metadata": {},
   "source": [
    "## Make a prediction\n",
    "\n",
    "First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "3f81d951",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'question': 'What were the two main things the author worked on before college?',\n",
       " 'answer': 'The two main things the author worked on before college were writing and programming.',\n",
       " 'result': ' Writing and programming.'}"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain(dataset[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d0c16cd7",
   "metadata": {},
   "source": [
    "## Make many predictions\n",
    "Now we can make predictions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "24b4c66e",
   "metadata": {},
   "outputs": [],
   "source": [
    "predictions = chain.apply(dataset)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "49d969fb",
   "metadata": {},
   "source": [
    "## Evaluate performance\n",
    "Now we can evaluate the predictions. The first thing we can do is look at them by eye."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "1d583f03",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'question': 'What were the two main things the author worked on before college?',\n",
       " 'answer': 'The two main things the author worked on before college were writing and programming.',\n",
       " 'result': ' Writing and programming.'}"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "predictions[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4783344b",
   "metadata": {},
   "source": [
    "Next, we can use a language model to score them programatically"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "d0a9341d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.evaluation.qa import QAEvalChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "1612dec1",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(temperature=0)\n",
    "eval_chain = QAEvalChain.from_llm(llm)\n",
    "graded_outputs = eval_chain.evaluate(dataset, predictions, question_key=\"question\", prediction_key=\"result\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "79587806",
   "metadata": {},
   "source": [
    "We can add in the graded output to the `predictions` dict and then get a count of the grades."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "2a689df5",
   "metadata": {},
   "outputs": [],
   "source": [
    "for i, prediction in enumerate(predictions):\n",
    "    prediction['grade'] = graded_outputs[i]['text']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "27b61215",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Counter({' CORRECT': 12, ' INCORRECT': 10})"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from collections import Counter\n",
    "Counter([pred['grade'] for pred in predictions])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "12fe30f4",
   "metadata": {},
   "source": [
    "We can also filter the datapoints to the incorrect examples and look at them."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "47c692a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "incorrect = [pred for pred in predictions if pred['grade'] == \" INCORRECT\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "0ef976c1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'question': 'What did the author write their dissertation on?',\n",
       " 'answer': 'The author wrote their dissertation on applications of continuations.',\n",
       " 'result': ' The author does not mention what their dissertation was on, so it is not known.',\n",
       " 'grade': ' INCORRECT'}"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "incorrect[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7710401a",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}