File size: 18,599 Bytes
44cbba4
 
e69e216
44cbba4
593892b
73bc7cb
a1fafd0
44cbba4
12a4d67
44cbba4
12a4d67
352586a
fc6b70e
12a4d67
44cbba4
12a4d67
 
 
73bc7cb
44cbba4
 
6fae90e
ab1146b
 
44cbba4
2259ea7
44cbba4
12a4d67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd0078
12a4d67
 
 
c73aad4
12a4d67
 
 
fc6b70e
12a4d67
 
 
 
 
 
 
 
 
 
 
 
e1c0c70
 
d806dcd
 
 
 
 
 
 
 
3aad6e9
96da226
a3b4e99
 
 
e1c0c70
 
 
b858233
7d66c17
b858233
 
 
 
 
 
fc6b70e
4fe2860
373e797
46c2a69
b858233
 
284cae9
b858233
 
 
a3b4e99
ac73d94
b858233
 
284cae9
b858233
8782f16
57aaee5
9e7216d
fd7a758
 
 
46c2a69
 
 
 
284cae9
 
 
 
 
46c2a69
 
8aeb50a
46c2a69
8aeb50a
46c2a69
 
3bb5a93
 
 
 
 
 
 
 
 
 
 
 
 
b1d4b4a
3bb5a93
 
 
 
 
 
fd7a758
3bb5a93
 
 
ac73d94
 
3bb5a93
9e7216d
 
 
 
fd7a758
 
 
 
 
 
 
ac73d94
fd7a758
 
 
 
9e7216d
 
 
 
fd7a758
 
b1d4b4a
46c2a69
3bb5a93
 
 
 
 
 
 
 
2259ea7
3bb5a93
9962eae
 
9247640
ac73d94
3bb5a93
 
 
 
ac73d94
3bb5a93
 
 
 
 
 
 
 
 
 
 
 
9e7216d
ac73d94
9247640
ac73d94
 
3bb5a93
 
ac73d94
3bb5a93
 
ac73d94
3bb5a93
e5960a0
12a4d67
d806dcd
 
4d70818
7d66c17
4d70818
7d66c17
 
 
 
b1d4b4a
d806dcd
 
6fae90e
 
 
 
 
 
 
7092199
 
6fae90e
d806dcd
6fae90e
 
d806dcd
 
6fae90e
d806dcd
 
6fae90e
d806dcd
 
 
 
fd7a758
4fe2860
363fecb
373e797
fd7a758
6fae90e
 
 
 
4fe2860
fd7a758
6fae90e
7d66c17
6fae90e
 
 
 
4fe2860
fd7a758
6fae90e
 
 
e69e216
6fae90e
373e797
fd7a758
 
 
 
 
 
 
 
 
 
 
7d66c17
fd7a758
 
 
 
 
 
 
 
4fe2860
fd7a758
 
 
6fae90e
 
 
f914bde
fd7a758
6fae90e
 
fd7a758
6fae90e
fd7a758
6fae90e
fd7a758
6fae90e
fd7a758
6fae90e
fd7a758
6fae90e
fd7a758
 
 
 
 
6fae90e
b1d4b4a
7092199
0d2fe93
ac73d94
d806dcd
c0e4fc0
3aad6e9
352586a
3aad6e9
d806dcd
 
 
 
 
 
352586a
b1d4b4a
7092199
 
 
fd7a758
 
 
b4d166d
 
7092199
fd7a758
7092199
 
2840963
56f49bb
7092199
 
73bc7cb
 
fd7a758
b1d4b4a
73bc7cb
3bb5a93
42c0f75
 
 
ac73d94
73bc7cb
3bb5a93
 
 
73bc7cb
 
fd7a758
73bc7cb
 
8d6975b
7092199
8d6975b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import requests
from collections import Counter

from requests.adapters import HTTPAdapter, Retry
import os
import time
import logging

import gradio as gr
import pandas as pd
import polars as pl
import matplotlib.pyplot as plt
import spaces
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import PyTorchModelHubMixin
import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig
from tqdm import tqdm


logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")


session = requests.Session()
retries = Retry(total=5, backoff_factor=2, status_forcelist=[502, 503, 504])
session.mount('http://', HTTPAdapter(max_retries=retries))


class QualityModel(nn.Module, PyTorchModelHubMixin):
    def __init__(self, config):
        super(QualityModel, self).__init__()
        self.model = AutoModel.from_pretrained(config["base_model"])
        self.dropout = nn.Dropout(config["fc_dropout"])
        self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"]))

    def forward(self, input_ids, attention_mask):
        features = self.model(
            input_ids=input_ids, attention_mask=attention_mask
        ).last_hidden_state
        dropped = self.dropout(features)
        outputs = self.fc(dropped)
        return torch.softmax(outputs[:, 0, :], dim=1)

device = "cuda" if torch.cuda.is_available() else "cpu"
config = AutoConfig.from_pretrained("nvidia/quality-classifier-deberta")
tokenizer = AutoTokenizer.from_pretrained("nvidia/quality-classifier-deberta")
model = QualityModel.from_pretrained("nvidia/quality-classifier-deberta").to(device)
# model = torch.compile(model)
model.eval()


@spaces.GPU
def predict(texts: list[str]):
    inputs = tokenizer(
        texts, return_tensors="pt", padding="longest", truncation=True
    ).to(device)
    outputs = model(inputs["input_ids"], inputs["attention_mask"])
    predicted_classes = torch.argmax(outputs, dim=1)
    predicted_domains = [
        config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()
    ]
    return predicted_domains


def plot_and_df(texts, preds):
    texts_df = pd.DataFrame({"quality": preds, "text": texts})
    counts = Counter(preds)
    counts_df = pd.DataFrame(
        {
            "quality": ["Low", "Medium", "High"],
            "count": [counts.get("Low", 0), counts.get("Medium", 0), counts.get("High", 0)]
        }
    )
    # counts.reset_index(inplace=True)
    return (
            gr.BarPlot(counts_df, x="quality", y="count", sort=None),
            texts_df[texts_df["quality"] == "Low"][["text"]][:min(texts_df.shape[0], 20)],
            texts_df[texts_df["quality"] == "Medium"][["text"]][:min(texts_df.shape[0], 20)],
            texts_df[texts_df["quality"] == "High"][["text"]][:min(texts_df.shape[0], 20)],
        )


def get_first_parquet_filename(dataset, config, split):
    parquet_resp = session.get(f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}", timeout=20).json()
    if "error" in parquet_resp:
        raise ValueError(parquet_resp["error"])
    first_parquet_file_url = [file for file in parquet_resp["parquet_files"] if file["split"] == split][0]["url"]
    return "/".join(first_parquet_file_url.split("/")[-3:])


@spaces.GPU
def run_quality_check(dataset, config, split, column, nested_column, batch_size, num_examples):
    logging.info(f"Fetching data for {dataset=} {config=} {split=} {column=}")
    try:
        filename = get_first_parquet_filename(dataset, config, split)
    except Exception as error:
        yield f"❌ {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
        return

    try:
        logging.info(f"Loading hf://datasets/{dataset}@~parquet/{filename}")
        yield f"loading data...", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
        data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{filename}", columns=[column])
    except Exception as error:
        yield f"❌ {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
        return
    logging.info("Data fetched.")

    data_sample = data.sample(num_examples, seed=16) if data.shape[0] > num_examples else data
    texts = data_sample[column].to_list()
    if nested_column:
        texts = [text[nested_column] for text in texts]
    predictions, texts_processed = [], []
    num_examples = min(len(texts), num_examples)
    for i in range(0, num_examples, batch_size):
        batch_texts = texts[i:i+batch_size]
        try:
            batch_predictions = predict(batch_texts)
        except Exception as error:
            yield f"❌ {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
            return
        predictions.extend(batch_predictions)
        texts_processed.extend(batch_texts)
        yield {"quality check in progress...": i / num_examples}, *plot_and_df(texts_processed, predictions), pd.DataFrame()

    yield {"quality check finished": 1.}, *plot_and_df(texts_processed, predictions), data_sample


PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY")
PERSPECTIVE_URL = f"https://commentanalyzer.googleapis.com/v1alpha1/comments:analyze?key={PERSPECTIVE_API_KEY}"
REQUESTED_ATTRIBUTES = {"TOXICITY": {}, "SEVERE_TOXICITY": {},
                        "IDENTITY_ATTACK": {}, "INSULT": {}, "PROFANITY": {},
                        "THREAT": {}}
ATT_SCORE = "attributeScores"
SUM_SCORE = "summaryScore"


def plot_toxicity(scores):
    fig, axs = plt.subplots(2, 3)#, figsize=(10, 6))
    for x, y, score_name in zip([0,0,0,1,1,1], [0,1,2,0,1,2], scores):
        axs[x,y].hist(scores[score_name], bins=20, range=(0., 1.))
        axs[x,y].set_xlabel(score_name)
    fig.supylabel("Number of texts")
    fig.suptitle("Histogram of toxicity scores")
    fig.tight_layout()

    return fig

def call_perspective_api(texts_df, column_name, nested_column_name, dataset, config, split):#, full_check=False):
    headers = {
        "content-type": "application/json",
    }
    req_att_scores = {**{attr: [] for attr in REQUESTED_ATTRIBUTES}}
    texts_processed = {column_name: []}

    # fetch data if it doesn't exist yet
    if texts_df.values.tolist() == [['', '', '']]:
        logging.info(f"Fetching data for {dataset=} {config=} {split=} {column_name=}")
        try:
            filename = get_first_parquet_filename(dataset, config, split)
        except Exception as error:
            yield f"❌ {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
            return

        try:
            logging.info(f"Loading hf://datasets/{dataset}@~parquet/{filename}")
            yield f"loading data...", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
            texts_df = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{filename}", columns=[column_name])
        except Exception as error:
            yield f"❌ {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
            return
        logging.info("Data fetched.")
        texts_df = texts_df.to_pandas()

    texts = texts_df.sample(100, random_state=16)[column_name].values if texts_df.shape[0] > 100 else texts_df[column_name].values
    if nested_column_name:
        texts = [text[nested_column_name] for text in texts]

    n_samples = len(texts)
    for i, text in tqdm(enumerate(texts), desc="scanning with perspective"):
        data = {
            "comment": {"text": text},
            "languages": ["en"],
            "requestedAttributes": REQUESTED_ATTRIBUTES
        }
        time.sleep(1)
        try:
            req_response = session.post(PERSPECTIVE_URL, json=data, headers=headers)
        except Exception as e:
            logging.info(e)
            logging.info(data)
            # yield {"bad request, example skipped...": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores})
            continue

        if req_response.ok:
            response = req_response.json()
            if ATT_SCORE in response:
                texts_processed[column_name].append(text)
                for req_att in REQUESTED_ATTRIBUTES:
                    if req_att in response[ATT_SCORE]:
                        att_score = response[ATT_SCORE][req_att][SUM_SCORE]["value"]
                        req_att_scores[req_att].append(att_score)
                    else:
                        req_att_scores[req_att].append(0)
            else:
                raise ValueError(req_response)
        else:
            try:
                req_response.raise_for_status()
            except Exception as e:
                logging.info(e)
                logging.info(data)
                # yield {"bad request, example skipped": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores})
                continue

        if i % 10 == 0:
            plot_toxicity(req_att_scores)
            yield {"toxicity check in progress...": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores})

    plot_toxicity(req_att_scores)
    yield {"toxicity check finished.": 1.}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores})


with gr.Blocks() as demo:
    gr.Markdown(
        """
        # πŸ“ˆ Text Data Quality Checker πŸ“‰
        
        This space gives some instruments to have a quick glance at the quality of an English text dataset.
         * It uses [NVIDIA's quality classifier model](https://huggingface.co./nvidia/quality-classifier-deberta) 
        on a small subset of texts. 
         * It uses [Perspective](https://perspectiveapi.com/how-it-works/) API to check toxicity of 100 random dataset texts
         
        ## Select dataset and text column
        """
    )
    with gr.Row():
        with gr.Column(scale=3):
            dataset_name = HuggingfaceHubSearch(
                    label="Hub Dataset ID",
                    placeholder="Search for dataset id on Huggingface",
                    search_type="dataset",
                )
        subset_dropdown = gr.Dropdown(label="Subset", visible=False)
        split_dropdown = gr.Dropdown(label="Split", visible=False)

    with gr.Accordion("Dataset preview", open=False):
        @gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
        def embed(name, subset, split):
            html_code = f"""
            <iframe
              src="https://huggingface.co./datasets/{name}/embed/viewer/{subset}/{split}"
              frameborder="0"
              width="100%"
              height="600px"
            ></iframe>
                """
            return gr.HTML(value=html_code)

    with gr.Row():
        text_column_dropdown = gr.Dropdown(label="Text column name")
        nested_text_column_dropdown = gr.Dropdown(label="Nested text column name", visible=False)

    def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str, text_feature):
        if "/" not in dataset.strip().strip("/"):
            return {
                subset_dropdown: gr.Dropdown(visible=False),
                split_dropdown: gr.Dropdown(visible=False),
                text_column_dropdown: gr.Dropdown(label="Text column name"),
                nested_text_column_dropdown: gr.Dropdown(visible=False)
            }
        info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20).json()
        if "error" in info_resp:
            return {
                subset_dropdown: gr.Dropdown(visible=False),
                split_dropdown: gr.Dropdown(visible=False),
                text_column_dropdown: gr.Dropdown(label="Text column name"),
                nested_text_column_dropdown: gr.Dropdown(visible=False)
            }
        subsets: list[str] = list(info_resp["dataset_info"])
        subset = default_subset if default_subset in subsets else subsets[0]
        splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
        split = default_split if default_split in splits else splits[0]
        features = info_resp["dataset_info"][subset]["features"]

        def _is_string_feature(feature):
            return isinstance(feature, dict) and feature.get("dtype") == "string"

        text_features = [feature_name for feature_name, feature in features.items() if _is_string_feature(feature)]
        nested_features = [feature_name for feature_name, feature in features.items() if isinstance(feature, dict) and isinstance(next(iter(feature.values())), dict)]
        nested_text_features = [feature_name for feature_name in nested_features if any(_is_string_feature(nested_feature) for nested_feature in features[feature_name].values())]
        if not text_feature:
            return {
                subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
                split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
                text_column_dropdown: gr.Dropdown(choices=text_features + nested_text_features, label="Text column name"),
                nested_text_column_dropdown: gr.Dropdown(visible=False),
            }
        if text_feature in nested_text_features:
            nested_keys = [feature_name for feature_name, feature in features[text_feature].items() if _is_string_feature(feature)]
            return {
                subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
                split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
                text_column_dropdown: gr.Dropdown(choices=text_features + nested_text_features,
                                                  label="Text column name"),
                nested_text_column_dropdown: gr.Dropdown(value=nested_keys[0], choices=nested_keys,
                                                         label="Nested text column name", visible=True)
            }
        return {
            subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
            split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
            text_column_dropdown: gr.Dropdown(choices=text_features + nested_text_features, label="Text column name"),
            nested_text_column_dropdown: gr.Dropdown(visible=False),
        }

    @dataset_name.change(inputs=[dataset_name], outputs=[subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown])
    def show_input_from_subset_dropdown(dataset: str) -> dict:
        return _resolve_dataset_selection(dataset, default_subset="default", default_split="train", text_feature=None)

    @subset_dropdown.change(inputs=[dataset_name, subset_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown])
    def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
        return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train", text_feature=None)

    @split_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown])
    def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
        return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split, text_feature=None)

    @text_column_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown])
    def show_input_from_text_column_dropdown(dataset: str, subset: str, split: str, text_column) -> dict:
        return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split, text_feature=text_column)

    gr.Markdown("## Run nvidia quality classifier")
    batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size", info="(set this to smaller value if this space crashes.)")
    num_examples = gr.Slider(0, 5000, 500, step=10, label="Number of examples", info="Number of random examples to run quality classifier on")
    gr_check_btn = gr.Button("Check Quality")
    progress_bar = gr.Label(show_label=False)
    plot = gr.BarPlot()


    with gr.Accordion("Explore some individual examples for each class", open=False):
        gr.Markdown("### Low")
        df_low = gr.DataFrame()
        gr.Markdown("### Medium")
        df_medium = gr.DataFrame()
        gr.Markdown("### High")
        df_high = gr.DataFrame()

    texts_df = gr.DataFrame(visible=False)

    gr.Examples(
        [
            ["HuggingFaceFW/fineweb-edu", "default", "train", "text", None, 16, 500],
            # ["fka/awesome-chatgpt-prompts", "default", "train", "prompt", 64, 200],
            # ["proj-persona/PersonaHub", "instruction", "train", "synthesized text",  32, 1000],
            ["argilla/FinePersonas-v0.1", "default", "train", "persona", None, 64, 5000],
            ["allenai/real-toxicity-prompts", "default", "train", "continuation", "text", 64, 5000],
        ],
        [dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, batch_size, num_examples],
        [progress_bar, plot, df_low, df_medium, df_high, texts_df],
        fn=run_quality_check,
        run_on_click=False,
        cache_examples=False,
    )

    gr_check_btn.click(
        run_quality_check,
        inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, batch_size, num_examples],
        outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
    )

    gr.Markdown("""## Explore toxicity
    Run [Perspective](https://perspectiveapi.com/how-it-works/) on 100 random samples to check toxicity
    """)
    gr_toxicity_btn = gr.Button("Check Toxicity")
    toxicity_progress_bar = gr.Label(show_label=False)
    toxicity_hist = gr.Plot()
    with gr.Accordion("Explore examples with toxicity scores:", open=False):
        toxicity_df = gr.DataFrame()
    gr_toxicity_btn.click(
        call_perspective_api,
        inputs=[texts_df, text_column_dropdown, nested_text_column_dropdown, dataset_name, subset_dropdown, split_dropdown],#, checkbox],
        outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df]
    )


demo.launch()