Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
373e797
1
Parent(s):
6fae90e
add feature dropdown
Browse files
app.py
CHANGED
@@ -83,14 +83,7 @@ def plot_and_df(texts, preds):
|
|
83 |
|
84 |
@spaces.GPU
|
85 |
def run_quality_check(dataset, config, split, column, batch_size, num_examples):
|
86 |
-
|
87 |
-
# if "error" in info_resp:
|
88 |
-
# yield "❌ " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
|
89 |
-
# return
|
90 |
-
# config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
|
91 |
-
# split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
|
92 |
-
# iter(info_resp["dataset_info"][config]["splits"]))
|
93 |
-
logging.info(f"Fetching data for {dataset} {config} {split}")
|
94 |
try:
|
95 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
|
96 |
except pl.exceptions.ComputeError:
|
@@ -244,7 +237,6 @@ with gr.Blocks() as demo:
|
|
244 |
label="Hub Dataset ID",
|
245 |
placeholder="Search for dataset id on Huggingface",
|
246 |
search_type="dataset",
|
247 |
-
# value="fka/awesome-chatgpt-prompts",
|
248 |
)
|
249 |
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
|
250 |
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
|
@@ -263,40 +255,47 @@ with gr.Blocks() as demo:
|
|
263 |
"""
|
264 |
return gr.HTML(value=html_code)
|
265 |
|
|
|
|
|
266 |
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str):
|
267 |
if "/" not in dataset.strip().strip("/"):
|
268 |
return {
|
269 |
subset_dropdown: gr.Dropdown(visible=False),
|
270 |
split_dropdown: gr.Dropdown(visible=False),
|
|
|
271 |
}
|
272 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
273 |
if "error" in info_resp:
|
274 |
return {
|
275 |
subset_dropdown: gr.Dropdown(visible=False),
|
276 |
split_dropdown: gr.Dropdown(visible=False),
|
|
|
277 |
}
|
278 |
subsets: list[str] = list(info_resp["dataset_info"])
|
279 |
subset = default_subset if default_subset in subsets else subsets[0]
|
280 |
splits: list[str] = info_resp["dataset_info"][subset]["splits"]
|
281 |
split = default_split if default_split in splits else splits[0]
|
|
|
|
|
282 |
return {
|
283 |
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
|
284 |
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
|
|
|
285 |
}
|
286 |
|
287 |
-
@dataset_name.change(inputs=[dataset_name], outputs=[subset_dropdown, split_dropdown])
|
288 |
def show_input_from_subset_dropdown(dataset: str) -> dict:
|
289 |
return _resolve_dataset_selection(dataset, default_subset="default", default_split="train")
|
290 |
|
291 |
-
@subset_dropdown.change(inputs=[dataset_name, subset_dropdown], outputs=[subset_dropdown, split_dropdown])
|
292 |
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
|
293 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train")
|
294 |
|
295 |
-
@split_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[subset_dropdown, split_dropdown])
|
296 |
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
|
297 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split)
|
298 |
|
299 |
-
text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
|
300 |
|
301 |
gr.Markdown("## Run nvidia quality classifier")
|
302 |
batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size (set this to smaller value if this space crashes.)")
|
@@ -317,17 +316,17 @@ with gr.Blocks() as demo:
|
|
317 |
texts_df = gr.DataFrame(visible=False)
|
318 |
gr_check_btn.click(
|
319 |
run_quality_check,
|
320 |
-
inputs=[dataset_name, subset_dropdown, split_dropdown,
|
321 |
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
|
322 |
)
|
323 |
|
324 |
-
gr.Markdown("""## Compute text quality measures
|
325 |
-
|
326 |
-
|
327 |
-
gr_ascii_btn = gr.Button("Data measures")
|
328 |
-
non_ascii_hist = gr.Plot()
|
329 |
-
|
330 |
-
gr_ascii_btn.click(non_ascii_check, inputs=[texts_df, text_column], outputs=[non_ascii_hist])
|
331 |
|
332 |
gr.Markdown("## Explore toxicity")
|
333 |
checkbox = gr.Checkbox(value=False, label="Run on full first parquet data (better not)")
|
@@ -338,7 +337,7 @@ with gr.Blocks() as demo:
|
|
338 |
toxicity_df = gr.DataFrame()
|
339 |
gr_toxicity_btn.click(
|
340 |
call_perspective_api,
|
341 |
-
inputs=[texts_df,
|
342 |
outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df]
|
343 |
)
|
344 |
|
|
|
83 |
|
84 |
@spaces.GPU
|
85 |
def run_quality_check(dataset, config, split, column, batch_size, num_examples):
|
86 |
+
logging.info(f"Fetching data for {dataset=} {config=} {split=} {column=}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
try:
|
88 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
|
89 |
except pl.exceptions.ComputeError:
|
|
|
237 |
label="Hub Dataset ID",
|
238 |
placeholder="Search for dataset id on Huggingface",
|
239 |
search_type="dataset",
|
|
|
240 |
)
|
241 |
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
|
242 |
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
|
|
|
255 |
"""
|
256 |
return gr.HTML(value=html_code)
|
257 |
|
258 |
+
text_column_dropdown = gr.Dropdown(label="Text column name", info="Text colum name to check (only non-nested texts are supported)")
|
259 |
+
|
260 |
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str):
|
261 |
if "/" not in dataset.strip().strip("/"):
|
262 |
return {
|
263 |
subset_dropdown: gr.Dropdown(visible=False),
|
264 |
split_dropdown: gr.Dropdown(visible=False),
|
265 |
+
text_column_dropdown: gr.Dropdown(info="Text colum name to check (only non-nested texts are supported)"),
|
266 |
}
|
267 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
268 |
if "error" in info_resp:
|
269 |
return {
|
270 |
subset_dropdown: gr.Dropdown(visible=False),
|
271 |
split_dropdown: gr.Dropdown(visible=False),
|
272 |
+
text_column_dropdown: gr.Dropdown(label="Text column name", info="Text colum name to check (only non-nested texts are supported)")
|
273 |
}
|
274 |
subsets: list[str] = list(info_resp["dataset_info"])
|
275 |
subset = default_subset if default_subset in subsets else subsets[0]
|
276 |
splits: list[str] = info_resp["dataset_info"][subset]["splits"]
|
277 |
split = default_split if default_split in splits else splits[0]
|
278 |
+
features = info_resp["dataset_info"][subset]["features"]
|
279 |
+
text_features = [feature_name for feature_name, feature in features.items() if isinstance(feature, dict) and feature.get("dtype") == "string"] # and feature.get("_type") == "Value"]
|
280 |
return {
|
281 |
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
|
282 |
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
|
283 |
+
text_column_dropdown: gr.Dropdown(choices=text_features, label="Text column name", info="Text colum name to check (only non-nested texts are supported)"),
|
284 |
}
|
285 |
|
286 |
+
@dataset_name.change(inputs=[dataset_name], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
|
287 |
def show_input_from_subset_dropdown(dataset: str) -> dict:
|
288 |
return _resolve_dataset_selection(dataset, default_subset="default", default_split="train")
|
289 |
|
290 |
+
@subset_dropdown.change(inputs=[dataset_name, subset_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
|
291 |
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
|
292 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train")
|
293 |
|
294 |
+
@split_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
|
295 |
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
|
296 |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split)
|
297 |
|
298 |
+
# text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
|
299 |
|
300 |
gr.Markdown("## Run nvidia quality classifier")
|
301 |
batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size (set this to smaller value if this space crashes.)")
|
|
|
316 |
texts_df = gr.DataFrame(visible=False)
|
317 |
gr_check_btn.click(
|
318 |
run_quality_check,
|
319 |
+
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, batch_size, num_examples],
|
320 |
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
|
321 |
)
|
322 |
|
323 |
+
# gr.Markdown("""## Compute text quality measures
|
324 |
+
# * proportion of non-ascii characters
|
325 |
+
# * #TODO""")
|
326 |
+
# gr_ascii_btn = gr.Button("Data measures")
|
327 |
+
# non_ascii_hist = gr.Plot()
|
328 |
+
#
|
329 |
+
# gr_ascii_btn.click(non_ascii_check, inputs=[texts_df, text_column], outputs=[non_ascii_hist])
|
330 |
|
331 |
gr.Markdown("## Explore toxicity")
|
332 |
checkbox = gr.Checkbox(value=False, label="Run on full first parquet data (better not)")
|
|
|
337 |
toxicity_df = gr.DataFrame()
|
338 |
gr_toxicity_btn.click(
|
339 |
call_perspective_api,
|
340 |
+
inputs=[texts_df, text_column_dropdown, checkbox],
|
341 |
outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df]
|
342 |
)
|
343 |
|