Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,415 Bytes
44cbba4 352586a 593892b 73bc7cb a1fafd0 44cbba4 12a4d67 44cbba4 12a4d67 352586a fc6b70e 12a4d67 44cbba4 12a4d67 73bc7cb 44cbba4 6fae90e ab1146b 44cbba4 12a4d67 2bd0078 12a4d67 c73aad4 12a4d67 fc6b70e 12a4d67 e1c0c70 d806dcd 3aad6e9 96da226 a3b4e99 e1c0c70 b858233 fc6b70e 6fae90e 373e797 46c2a69 b858233 a3b4e99 b858233 8782f16 57aaee5 9e7216d 46c2a69 b1d4b4a 46c2a69 9e7216d 46c2a69 3bb5a93 b1d4b4a 3bb5a93 9e7216d 3bb5a93 9e7216d b1d4b4a 46c2a69 3bb5a93 9e7216d 3bb5a93 b1d4b4a 3bb5a93 46c2a69 3bb5a93 e5960a0 12a4d67 d806dcd 9000c45 0c2d52a 9000c45 b1d4b4a d806dcd 6fae90e 7092199 6fae90e 2bd0078 d806dcd 6fae90e d806dcd 6fae90e d806dcd 6fae90e d806dcd 0c2d52a 373e797 6fae90e 373e797 6fae90e 373e797 6fae90e 373e797 6fae90e 373e797 6fae90e 373e797 6fae90e 373e797 6fae90e 373e797 6fae90e b1d4b4a 7092199 12a4d67 d806dcd c0e4fc0 3aad6e9 352586a 3aad6e9 d806dcd 352586a b1d4b4a 7092199 ecd97c6 7092199 4bc0ae7 ecd97c6 7092199 2840963 56f49bb 7092199 73bc7cb 373e797 b1d4b4a 73bc7cb 3bb5a93 42c0f75 9e7216d 42c0f75 73bc7cb 3bb5a93 73bc7cb 9e7216d 73bc7cb 8d6975b 7092199 8d6975b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import requests
from collections import Counter
from requests.adapters import HTTPAdapter, Retry
import multiprocessing
import os
import time
import logging
import gradio as gr
import pandas as pd
import polars as pl
import matplotlib.pyplot as plt
import spaces
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import PyTorchModelHubMixin
import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
session.mount('http://', HTTPAdapter(max_retries=retries))
class QualityModel(nn.Module, PyTorchModelHubMixin):
def __init__(self, config):
super(QualityModel, self).__init__()
self.model = AutoModel.from_pretrained(config["base_model"])
self.dropout = nn.Dropout(config["fc_dropout"])
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"]))
def forward(self, input_ids, attention_mask):
features = self.model(
input_ids=input_ids, attention_mask=attention_mask
).last_hidden_state
dropped = self.dropout(features)
outputs = self.fc(dropped)
return torch.softmax(outputs[:, 0, :], dim=1)
device = "cuda" if torch.cuda.is_available() else "cpu"
config = AutoConfig.from_pretrained("nvidia/quality-classifier-deberta")
tokenizer = AutoTokenizer.from_pretrained("nvidia/quality-classifier-deberta")
model = QualityModel.from_pretrained("nvidia/quality-classifier-deberta").to(device)
# model = torch.compile(model)
model.eval()
@spaces.GPU
def predict(texts: list[str]):
inputs = tokenizer(
texts, return_tensors="pt", padding="longest", truncation=True
).to(device)
outputs = model(inputs["input_ids"], inputs["attention_mask"])
predicted_classes = torch.argmax(outputs, dim=1)
predicted_domains = [
config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()
]
return predicted_domains
def plot_and_df(texts, preds):
texts_df = pd.DataFrame({"quality": preds, "text": texts})
counts = Counter(preds)
counts_df = pd.DataFrame(
{
"quality": ["Low", "Medium", "High"],
"count": [counts.get("Low", 0), counts.get("Medium", 0), counts.get("High", 0)]
}
)
# counts.reset_index(inplace=True)
return (
gr.BarPlot(counts_df, x="quality", y="count", sort=None),
texts_df[texts_df["quality"] == "Low"][["text"]][:min(texts_df.shape[0], 20)],
texts_df[texts_df["quality"] == "Medium"][["text"]][:min(texts_df.shape[0], 20)],
texts_df[texts_df["quality"] == "High"][["text"]][:min(texts_df.shape[0], 20)],
)
def get_first_parquet_filename(dataset, config, split):
parquet_resp = session.get(f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}", timeout=3).json()
if "error" in parquet_resp:
raise ValueError(parquet_resp["error"])
first_parquet_file_url = [file for file in parquet_resp["parquet_files"] if file["split"] == split][0]["url"]
return "/".join(first_parquet_file_url.split("/")[-3:])
@spaces.GPU
def run_quality_check(dataset, config, split, column, batch_size, num_examples):
logging.info(f"Fetching data for {dataset=} {config=} {split=} {column=}")
try:
filename = get_first_parquet_filename(dataset, config, split)
except Exception as error:
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
return
try:
logging.info(f"Loading hf://datasets/{dataset}@~parquet/{filename}")
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{filename}", columns=[column])
except Exception as error:
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
return
logging.info("Data fetched.")
data_sample = data.sample(num_examples, seed=16) if data.shape[0] > num_examples else data
texts = [text[:10000] for text in data_sample[column].to_list()]
predictions, texts_processed = [], []
num_examples = min(len(texts), num_examples)
for i in range(0, num_examples, batch_size):
batch_texts = texts[i:i+batch_size]
batch_predictions = predict(batch_texts)
predictions.extend(batch_predictions)
texts_processed.extend(batch_texts)
yield {"check in progress...": i / num_examples}, *plot_and_df(texts_processed, predictions), pd.DataFrame()
yield {"finished": 1.}, *plot_and_df(texts_processed, predictions), data_sample
PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY")
PERSPECTIVE_URL = f"https://commentanalyzer.googleapis.com/v1alpha1/comments:analyze?key={PERSPECTIVE_API_KEY}"
REQUESTED_ATTRIBUTES = {"TOXICITY": {}, "SEVERE_TOXICITY": {},
"IDENTITY_ATTACK": {}, "INSULT": {}, "PROFANITY": {},
"THREAT": {}}
ATT_SCORE = "attributeScores"
SUM_SCORE = "summaryScore"
def plot_toxicity(scores):
fig, axs = plt.subplots(2, 3)#, figsize=(10, 6))
for x, y, score_name in zip([0,0,0,1,1,1], [0,1,2,0,1,2], scores):
axs[x,y].hist(scores[score_name], bins=20, range=(0., 1.))
axs[x,y].set_xlabel(score_name)
fig.supylabel("Number of texts")
fig.suptitle("Histogram of toxicity scores")
fig.tight_layout()
return fig
def call_perspective_api(texts_df, column_name, dataset, config, split):#, full_check=False):
headers = {
"content-type": "application/json",
}
req_att_scores = {attr: [] for attr in REQUESTED_ATTRIBUTES}
# fetch data if it doesn't exist yet
if texts_df.values.tolist() == [['', '', '']]:
logging.info(f"Fetching data for {dataset=} {config=} {split=} {column_name=}")
try:
texts_df = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column_name])
except pl.exceptions.ComputeError:
try:
texts_df = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column_name])
except pl.exceptions.ComputeError:
try:
texts_df = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}-part0/0000.parquet", columns=[column_name])
except Exception as error:
yield f"β {error}", plt.gcf(), pd.DataFrame(),
return
logging.info("Data fetched.")
texts_df = texts_df.to_pandas()
# texts = texts_df.sample(100, seed=16)[column_name].values if not full_check else texts_df[column_name].values
texts = texts_df.sample(100, random_state=16)[column_name].values if texts_df.shape[0] > 100 else texts_df[column_name].values
n_samples = len(texts)
for i, text in tqdm(enumerate(texts), desc="scanning with perspective"):
data = {
"comment": {"text": text},
"languages": ["en"],
"requestedAttributes": REQUESTED_ATTRIBUTES
}
time.sleep(1)
try:
req_response = requests.post(PERSPECTIVE_URL, json=data, headers=headers)
except Exception as e:
print(e)
return req_att_scores
if req_response.ok:
response = req_response.json()
if ATT_SCORE in response:
for req_att in REQUESTED_ATTRIBUTES:
if req_att in response[ATT_SCORE]:
att_score = response[ATT_SCORE][req_att][SUM_SCORE]["value"]
req_att_scores[req_att].append(att_score)
else:
req_att_scores[req_att].append(0)
else:
raise ValueError(req_response)
else:
try:
req_response.raise_for_status()
except Exception as e:
logging.info(e)
return req_att_scores
if i % 10 == 0:
plot_toxicity(req_att_scores)
print(len(texts[:i]), len(req_att_scores["TOXICITY"]))
yield {"toxicity check in progress...": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({column_name: texts[:i+1], **req_att_scores})
plot_toxicity(req_att_scores)
yield {"toxicity check finished.": 1.}, plt.gcf(), pd.DataFrame.from_dict({column_name: texts, **req_att_scores})
with gr.Blocks() as demo:
gr.Markdown(
"""
# π« Dataset Quality Checker π«
This space:
* uses [NVIDIA's quality classifier model](https://huggingface.co./nvidia/quality-classifier-deberta)
on a subset of any text dataset on the Hub to give a quick glance on the quality of texts.
* uses [Perspective](https://perspectiveapi.com/how-it-works/) to check toxicity of some random samples
## Select dataset and text column
"""
)
with gr.Row():
with gr.Column(scale=3):
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
split_dropdown = gr.Dropdown(label="Split", visible=False)
# config_name = "default" # TODO: user input
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
def embed(name, subset, split):
html_code = f"""
<iframe
src="https://huggingface.co./datasets/{name}/embed/viewer/{subset}/{split}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return gr.HTML(value=html_code)
text_column_dropdown = gr.Dropdown(label="Text column name", info="Text colum name to check. ")
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str):
if "/" not in dataset.strip().strip("/"):
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(info="Text colum name to check (only non-nested texts are supported)"),
}
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
if "error" in info_resp:
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name", info="Text colum name to check (only non-nested texts are supported)")
}
subsets: list[str] = list(info_resp["dataset_info"])
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = info_resp["dataset_info"][subset]["splits"]
split = default_split if default_split in splits else splits[0]
features = info_resp["dataset_info"][subset]["features"]
text_features = [feature_name for feature_name, feature in features.items() if isinstance(feature, dict) and feature.get("dtype") == "string"] # and feature.get("_type") == "Value"]
return {
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
text_column_dropdown: gr.Dropdown(choices=text_features, label="Text column name", info="Text colum name to check (only non-nested texts are supported)"),
}
@dataset_name.change(inputs=[dataset_name], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
def show_input_from_subset_dropdown(dataset: str) -> dict:
return _resolve_dataset_selection(dataset, default_subset="default", default_split="train")
@subset_dropdown.change(inputs=[dataset_name, subset_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train")
@split_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[subset_dropdown, split_dropdown, text_column_dropdown])
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split)
gr.Markdown("## Run nvidia quality classifier")
batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size", info="(set this to smaller value if this space crashes.)")
num_examples = gr.Slider(0, 1000, 500, step=10, label="Number of examples", info="Number of random examples to run quality classifier on")
gr_check_btn = gr.Button("Check Dataset")
progress_bar = gr.Label(show_label=False)
plot = gr.BarPlot()
with gr.Accordion("Explore some individual examples for each class", open=False):
gr.Markdown("### Low")
df_low = gr.DataFrame()
gr.Markdown("### Medium")
df_medium = gr.DataFrame()
gr.Markdown("### High")
df_high = gr.DataFrame()
texts_df = gr.DataFrame(visible=False)
gr.Examples(
[
["HuggingFaceFW/fineweb-edu", "default", "train", "text", 16, 500],
["fka/awesome-chatgpt-prompts", "default", "train", "prompt", 64, 200],
["proj-persona/PersonaHub", "instruction", "train", "synthesized text", 32, 1000],
["argilla/FinePersonas-v0.1", "default", "train", "persona", 64, 1000],
["Open-Orca/OpenOrca", "default", "train", "response", 16, 500],
],
[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, batch_size, num_examples],
[progress_bar, plot, df_low, df_medium, df_high, texts_df],
fn=run_quality_check,
run_on_click=False,
cache_examples=False,
)
gr_check_btn.click(
run_quality_check,
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, batch_size, num_examples],
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
)
gr.Markdown("""## Explore toxicity
Run [Perspective](https://perspectiveapi.com/how-it-works/) on 100 random samples to check toxicity
""")
# checkbox = gr.Checkbox(value=False, label="Run on full first parquet data (better not)")
gr_toxicity_btn = gr.Button("Run Perpspective API")
toxicity_progress_bar = gr.Label(show_label=False)
toxicity_hist = gr.Plot()
with gr.Accordion("Explore examples with toxicity scores:", open=False):
toxicity_df = gr.DataFrame()
gr_toxicity_btn.click(
call_perspective_api,
inputs=[texts_df, text_column_dropdown, dataset_name, subset_dropdown, split_dropdown],#, checkbox],
outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df]
)
demo.launch() |