pavan01729's picture
Update app.py
c0335d4 unverified
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
from langchain.agents import initialize_agent, AgentType
from langchain.callbacks import StreamlitCallbackHandler
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
## Arxiv and Wikipedia Tools
arxiv_wrapper = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200)
arxiv = ArxivQueryRun(api_wrapper=arxiv_wrapper)
wiki_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=200)
wiki = WikipediaQueryRun(api_wrapper=wiki_wrapper)
search = DuckDuckGoSearchRun(name="Search")
# Streamlit UI
st.title("πŸ”Ž LangChain - Chat with search")
st.markdown("""
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
Try more LangChain 🀝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
""")
# Sidebar for settings
st.sidebar.title("Settings")
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
# Initialize session state for messages if not already
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
]
# Display previous chat messages
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
# Capture user input from chat
if prompt := st.chat_input(placeholder="What is machine learning?"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
# Initialize the language model
if api_key: # Ensure API key is entered
llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True)
tools = [search, arxiv, wiki]
# Initialize the search agent with tools and the language model
search_agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
handle_parsing_errors=True # Enable error handling for parsing issues
)
with st.chat_message("assistant"):
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
try:
# Try running the agent
response = search_agent.run(st.session_state.messages, callbacks=[st_cb])
st.session_state.messages.append({'role': 'assistant', "content": response})
st.write(response)
except ValueError as e:
# Catch and display output parsing errors
st.error(f"An error occurred while parsing the LLM's output: {str(e)}")
st.session_state.messages.append({'role': 'assistant', "content": "Sorry, I encountered an error processing your request."})
st.write("Sorry, I encountered an error processing your request.")
else:
st.error("Please enter your Groq API Key in the settings.")