pavan01729 commited on
Commit
c0335d4
β€’
1 Parent(s): 38cf18f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -29
app.py CHANGED
@@ -1,54 +1,76 @@
1
  import streamlit as st
2
  from langchain_groq import ChatGroq
3
- from langchain_community.utilities import ArxivAPIWrapper,WikipediaAPIWrapper
4
- from langchain_community.tools import ArxivQueryRun,WikipediaQueryRun,DuckDuckGoSearchRun
5
- from langchain.agents import initialize_agent,AgentType
6
  from langchain.callbacks import StreamlitCallbackHandler
7
  import os
8
  from dotenv import load_dotenv
9
- ## Code
10
- ## COMMIT
11
 
12
- ## Arxiv and wikipedia Tools
13
- arxiv_wrapper=ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200)
14
- arxiv=ArxivQueryRun(api_wrapper=arxiv_wrapper)
15
 
16
- api_wrapper=WikipediaAPIWrapper(top_k_results=1,doc_content_chars_max=200)
17
- wiki=WikipediaQueryRun(api_wrapper=api_wrapper)
 
18
 
19
- search=DuckDuckGoSearchRun(name="Search")
 
20
 
 
21
 
 
22
  st.title("πŸ”Ž LangChain - Chat with search")
23
- """
24
  In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
25
  Try more LangChain 🀝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
26
- """
27
 
28
- ## Sidebar for settings
29
  st.sidebar.title("Settings")
30
- api_key=st.sidebar.text_input("Enter your Groq API Key:",type="password")
31
 
 
32
  if "messages" not in st.session_state:
33
- st.session_state["messages"]=[
34
- {"role":"assisstant","content":"Hi,I'm a chatbot who can search the web. How can I help you?"}
35
  ]
36
 
 
37
  for msg in st.session_state.messages:
38
- st.chat_message(msg["role"]).write(msg['content'])
39
 
40
- if prompt:=st.chat_input(placeholder="What is machine learning?"):
41
- st.session_state.messages.append({"role":"user","content":prompt})
 
42
  st.chat_message("user").write(prompt)
43
 
44
- llm=ChatGroq(groq_api_key=api_key,model_name="Llama3-8b-8192",streaming=True)
45
- tools=[search,arxiv,wiki]
 
 
46
 
47
- search_agent=initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,handling_parsing_errors=True)
48
-
49
- with st.chat_message("assistant"):
50
- st_cb=StreamlitCallbackHandler(st.container(),expand_new_thoughts=False)
51
- response=search_agent.run(st.session_state.messages,callbacks=[st_cb])
52
- st.session_state.messages.append({'role':'assistant',"content":response})
53
- st.write(response)
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  from langchain_groq import ChatGroq
3
+ from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
4
+ from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
5
+ from langchain.agents import initialize_agent, AgentType
6
  from langchain.callbacks import StreamlitCallbackHandler
7
  import os
8
  from dotenv import load_dotenv
 
 
9
 
10
+ # Load environment variables
11
+ load_dotenv()
 
12
 
13
+ ## Arxiv and Wikipedia Tools
14
+ arxiv_wrapper = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200)
15
+ arxiv = ArxivQueryRun(api_wrapper=arxiv_wrapper)
16
 
17
+ wiki_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=200)
18
+ wiki = WikipediaQueryRun(api_wrapper=wiki_wrapper)
19
 
20
+ search = DuckDuckGoSearchRun(name="Search")
21
 
22
+ # Streamlit UI
23
  st.title("πŸ”Ž LangChain - Chat with search")
24
+ st.markdown("""
25
  In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
26
  Try more LangChain 🀝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
27
+ """)
28
 
29
+ # Sidebar for settings
30
  st.sidebar.title("Settings")
31
+ api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
32
 
33
+ # Initialize session state for messages if not already
34
  if "messages" not in st.session_state:
35
+ st.session_state["messages"] = [
36
+ {"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
37
  ]
38
 
39
+ # Display previous chat messages
40
  for msg in st.session_state.messages:
41
+ st.chat_message(msg["role"]).write(msg["content"])
42
 
43
+ # Capture user input from chat
44
+ if prompt := st.chat_input(placeholder="What is machine learning?"):
45
+ st.session_state.messages.append({"role": "user", "content": prompt})
46
  st.chat_message("user").write(prompt)
47
 
48
+ # Initialize the language model
49
+ if api_key: # Ensure API key is entered
50
+ llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True)
51
+ tools = [search, arxiv, wiki]
52
 
53
+ # Initialize the search agent with tools and the language model
54
+ search_agent = initialize_agent(
55
+ tools,
56
+ llm,
57
+ agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
58
+ handle_parsing_errors=True # Enable error handling for parsing issues
59
+ )
60
 
61
+ with st.chat_message("assistant"):
62
+ st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
63
+
64
+ try:
65
+ # Try running the agent
66
+ response = search_agent.run(st.session_state.messages, callbacks=[st_cb])
67
+ st.session_state.messages.append({'role': 'assistant', "content": response})
68
+ st.write(response)
69
+
70
+ except ValueError as e:
71
+ # Catch and display output parsing errors
72
+ st.error(f"An error occurred while parsing the LLM's output: {str(e)}")
73
+ st.session_state.messages.append({'role': 'assistant', "content": "Sorry, I encountered an error processing your request."})
74
+ st.write("Sorry, I encountered an error processing your request.")
75
+ else:
76
+ st.error("Please enter your Groq API Key in the settings.")