Short_Shakesphere / train_get2_8_init.py
padmanabhbosamia's picture
Upload 3 files
ead853e verified
import os
import math
import time
import torch
import torch.nn as nn
from torch.nn import functional as F
import wandb
import gradio as gr
from tqdm import tqdm
import tiktoken
from transformer import GPT, GPTConfig # Import from transformer.py instead
from torch.cuda.amp import autocast, GradScaler
# DataLoader class for handling input.txt
class DataLoaderLite:
def __init__(self, B, T, config):
self.B = B
self.T = T
self.config = config
# Load and tokenize input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
self.tokens = torch.tensor(enc.encode(text), dtype=torch.long)
# Create dataset chunks for faster loading
self.data = []
for i in range(0, len(self.tokens) - T, B * T):
chunk = self.tokens[i:i + B * T + 1]
if len(chunk) == B * T + 1:
self.data.append(chunk)
print(f'Loaded {len(self.tokens)} tokens')
print(f'Created {len(self.data)} batches')
self.current_idx = 0
def next_batch(self):
chunk = self.data[self.current_idx]
x = chunk[:-1].view(self.B, self.T)
y = chunk[1:].view(self.B, self.T)
self.current_idx = (self.current_idx + 1) % len(self.data)
if self.config.pin_memory:
x = x.pin_memory()
y = y.pin_memory()
return x, y
class TrainingConfig:
def __init__(self):
# Smaller model architecture (~15M params)
self.n_layer = 6 # Reduced from 12
self.n_head = 6 # Reduced from 12
self.n_embd = 384 # Reduced from 768
self.block_size = 256 # Keep this the same
self.dropout = 0.2
# Optimized training hyperparameters for faster convergence
self.learning_rate = 1e-4 # Reduced learning rate for stability
self.max_iters = 50000 # Increased max iterations
self.batch_size = 4 # Reduced batch size
self.grad_clip = 0.5 # Reduced gradient clipping
self.weight_decay = 0.1
self.betas = (0.9, 0.95)
self.warmup_iters = 2000
self.lr_decay_iters = 40000 # Increased decay iterations
self.min_lr = 1e-5
self.eval_interval = 100 # More frequent evaluation
self.eval_iters = 20
# Performance optimization flags
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.gradient_checkpointing = True
self.mixed_precision = True
self.gradient_accumulation_steps = 8 # Increased for effective batch size
self.num_workers = 4
self.pin_memory = True
# Check if Triton is available before enabling compile
try:
import triton
self.compile_model = True
except ImportError:
print("Triton not available, disabling model compilation")
self.compile_model = False
class TrainingLogger:
def __init__(self, log_file='training_log.txt'):
self.log_file = log_file
self.start_time = time.time()
# Initialize log file
with open(self.log_file, 'w') as f:
f.write("Training Log\n")
f.write("=" * 50 + "\n")
f.write(f"Training started at: {time.strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write("Iteration | Train Loss | Val Loss | Learning Rate | Tokens/sec\n")
f.write("-" * 65 + "\n")
def log_step(self, iter_num, train_loss, val_loss, lr, tokens_per_sec):
log_line = f"{iter_num:>9} | {train_loss:>10.4f} | {val_loss:>8.4f} | {lr:>12.2e} | {tokens_per_sec:>9.2f}"
print(log_line)
with open(self.log_file, 'a') as f:
f.write(log_line + "\n")
def log_message(self, message):
print(message)
with open(self.log_file, 'a') as f:
f.write("\n" + message + "\n")
def finish(self):
total_time = (time.time() - self.start_time) / 3600 # Convert to hours
message = f"\nTraining completed in {total_time:.2f} hours"
self.log_message(message)
def get_lr(it, config):
if it < config.warmup_iters:
return config.learning_rate * it / config.warmup_iters
if it > config.lr_decay_iters:
return config.min_lr
decay_ratio = (it - config.warmup_iters) / (config.lr_decay_iters - config.warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return config.min_lr + coeff * (config.learning_rate - config.min_lr)
def evaluate_loss(model, train_loader, config):
model.eval()
total_loss = 0.0
with torch.no_grad():
for _ in range(config.eval_iters):
x, y = train_loader.next_batch()
x, y = x.to(config.device), y.to(config.device)
_, loss = model(x, y)
total_loss += loss.item()
model.train()
return total_loss / config.eval_iters
def train_model():
config = TrainingConfig()
logger = TrainingLogger()
# Create and optimize model
model_config = GPTConfig(
block_size=config.block_size,
n_layer=config.n_layer,
n_head=config.n_head,
n_embd=config.n_embd,
dropout=config.dropout
)
model = GPT(model_config)
if config.compile_model and hasattr(torch, 'compile'):
try:
model = torch.compile(model)
logger.log_message("Model compilation successful")
except Exception as e:
logger.log_message(f"Model compilation failed: {e}")
logger.log_message("Continuing without compilation")
if config.gradient_checkpointing:
model.gradient_checkpointing_enable()
model.to(config.device)
logger.log_message(f"Number of parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config.learning_rate,
betas=config.betas,
weight_decay=config.weight_decay
)
train_loader = DataLoaderLite(B=config.batch_size, T=config.block_size, config=config)
scaler = GradScaler() if config.mixed_precision else None
best_val_loss = float('inf')
no_improvement_count = 0
for iter in tqdm(range(config.max_iters)):
iter_start = time.time()
# Training step
x, y = train_loader.next_batch()
x, y = x.to(config.device, non_blocking=True), y.to(config.device, non_blocking=True)
lr = get_lr(iter, config)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if config.mixed_precision:
with autocast():
logits, loss = model(x, y)
loss = loss / config.gradient_accumulation_steps
scaler.scale(loss).backward()
if (iter + 1) % config.gradient_accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
else:
logits, loss = model(x, y)
loss = loss / config.gradient_accumulation_steps
loss.backward()
if (iter + 1) % config.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
# Calculate metrics
iter_time = time.time() - iter_start
tokens_per_sec = config.batch_size * config.block_size / iter_time
# Evaluation and logging
if iter % config.eval_interval == 0:
val_loss = evaluate_loss(model, train_loader, config)
logger.log_step(iter, loss.item(), val_loss, lr, tokens_per_sec)
if val_loss < best_val_loss:
best_val_loss = val_loss
no_improvement_count = 0
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'val_loss': val_loss,
'iter': iter,
'config': model_config
}, 'best_model.pt')
logger.log_message(f"New best model saved with validation loss: {val_loss:.6f}")
else:
no_improvement_count += 1
if val_loss < 0.099999:
logger.log_message(f"Target loss achieved at iteration {iter}")
logger.log_message(f"Final validation loss: {val_loss:.6f}")
break
if no_improvement_count >= 5:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.5
no_improvement_count = 0
logger.log_message("Reducing learning rate due to no improvement")
logger.finish()
return model
def generate_text(model, prompt, max_length=100, temperature=0.7):
model.eval()
device = model.device
enc = tiktoken.get_encoding('gpt2')
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device)
with torch.no_grad():
output_sequence = []
for _ in range(max_length):
outputs = model(input_ids)
logits = outputs[0] if isinstance(outputs, tuple) else outputs
next_token_logits = logits[:, -1, :]
# Apply temperature
next_token_logits = next_token_logits / temperature
probs = F.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
output_sequence.append(next_token.item())
input_ids = torch.cat([input_ids, next_token], dim=1)
return enc.decode(output_sequence)
if __name__ == "__main__":
# Train the model
model = train_model()
# Create and launch Gradio interface
def predict(prompt, length, temp=0.7):
return generate_text(model, prompt, length, temp)
iface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(lines=2, label="Enter your prompt"),
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature", step=0.1)
],
outputs=gr.Textbox(lines=5, label="Generated Text"),
title="Custom Transformer Text Generator",
description="Enter a prompt and adjust parameters to generate text"
)
iface.launch(share=True)