Spaces:
Sleeping
Sleeping
File size: 11,249 Bytes
ead853e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import math
import time
import torch
import torch.nn as nn
from torch.nn import functional as F
import wandb
import gradio as gr
from tqdm import tqdm
import tiktoken
from transformer import GPT, GPTConfig # Import from transformer.py instead
from torch.cuda.amp import autocast, GradScaler
# DataLoader class for handling input.txt
class DataLoaderLite:
def __init__(self, B, T, config):
self.B = B
self.T = T
self.config = config
# Load and tokenize input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
self.tokens = torch.tensor(enc.encode(text), dtype=torch.long)
# Create dataset chunks for faster loading
self.data = []
for i in range(0, len(self.tokens) - T, B * T):
chunk = self.tokens[i:i + B * T + 1]
if len(chunk) == B * T + 1:
self.data.append(chunk)
print(f'Loaded {len(self.tokens)} tokens')
print(f'Created {len(self.data)} batches')
self.current_idx = 0
def next_batch(self):
chunk = self.data[self.current_idx]
x = chunk[:-1].view(self.B, self.T)
y = chunk[1:].view(self.B, self.T)
self.current_idx = (self.current_idx + 1) % len(self.data)
if self.config.pin_memory:
x = x.pin_memory()
y = y.pin_memory()
return x, y
class TrainingConfig:
def __init__(self):
# Smaller model architecture (~15M params)
self.n_layer = 6 # Reduced from 12
self.n_head = 6 # Reduced from 12
self.n_embd = 384 # Reduced from 768
self.block_size = 256 # Keep this the same
self.dropout = 0.2
# Optimized training hyperparameters for faster convergence
self.learning_rate = 1e-4 # Reduced learning rate for stability
self.max_iters = 50000 # Increased max iterations
self.batch_size = 4 # Reduced batch size
self.grad_clip = 0.5 # Reduced gradient clipping
self.weight_decay = 0.1
self.betas = (0.9, 0.95)
self.warmup_iters = 2000
self.lr_decay_iters = 40000 # Increased decay iterations
self.min_lr = 1e-5
self.eval_interval = 100 # More frequent evaluation
self.eval_iters = 20
# Performance optimization flags
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.gradient_checkpointing = True
self.mixed_precision = True
self.gradient_accumulation_steps = 8 # Increased for effective batch size
self.num_workers = 4
self.pin_memory = True
# Check if Triton is available before enabling compile
try:
import triton
self.compile_model = True
except ImportError:
print("Triton not available, disabling model compilation")
self.compile_model = False
class TrainingLogger:
def __init__(self, log_file='training_log.txt'):
self.log_file = log_file
self.start_time = time.time()
# Initialize log file
with open(self.log_file, 'w') as f:
f.write("Training Log\n")
f.write("=" * 50 + "\n")
f.write(f"Training started at: {time.strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write("Iteration | Train Loss | Val Loss | Learning Rate | Tokens/sec\n")
f.write("-" * 65 + "\n")
def log_step(self, iter_num, train_loss, val_loss, lr, tokens_per_sec):
log_line = f"{iter_num:>9} | {train_loss:>10.4f} | {val_loss:>8.4f} | {lr:>12.2e} | {tokens_per_sec:>9.2f}"
print(log_line)
with open(self.log_file, 'a') as f:
f.write(log_line + "\n")
def log_message(self, message):
print(message)
with open(self.log_file, 'a') as f:
f.write("\n" + message + "\n")
def finish(self):
total_time = (time.time() - self.start_time) / 3600 # Convert to hours
message = f"\nTraining completed in {total_time:.2f} hours"
self.log_message(message)
def get_lr(it, config):
if it < config.warmup_iters:
return config.learning_rate * it / config.warmup_iters
if it > config.lr_decay_iters:
return config.min_lr
decay_ratio = (it - config.warmup_iters) / (config.lr_decay_iters - config.warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return config.min_lr + coeff * (config.learning_rate - config.min_lr)
def evaluate_loss(model, train_loader, config):
model.eval()
total_loss = 0.0
with torch.no_grad():
for _ in range(config.eval_iters):
x, y = train_loader.next_batch()
x, y = x.to(config.device), y.to(config.device)
_, loss = model(x, y)
total_loss += loss.item()
model.train()
return total_loss / config.eval_iters
def train_model():
config = TrainingConfig()
logger = TrainingLogger()
# Create and optimize model
model_config = GPTConfig(
block_size=config.block_size,
n_layer=config.n_layer,
n_head=config.n_head,
n_embd=config.n_embd,
dropout=config.dropout
)
model = GPT(model_config)
if config.compile_model and hasattr(torch, 'compile'):
try:
model = torch.compile(model)
logger.log_message("Model compilation successful")
except Exception as e:
logger.log_message(f"Model compilation failed: {e}")
logger.log_message("Continuing without compilation")
if config.gradient_checkpointing:
model.gradient_checkpointing_enable()
model.to(config.device)
logger.log_message(f"Number of parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config.learning_rate,
betas=config.betas,
weight_decay=config.weight_decay
)
train_loader = DataLoaderLite(B=config.batch_size, T=config.block_size, config=config)
scaler = GradScaler() if config.mixed_precision else None
best_val_loss = float('inf')
no_improvement_count = 0
for iter in tqdm(range(config.max_iters)):
iter_start = time.time()
# Training step
x, y = train_loader.next_batch()
x, y = x.to(config.device, non_blocking=True), y.to(config.device, non_blocking=True)
lr = get_lr(iter, config)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if config.mixed_precision:
with autocast():
logits, loss = model(x, y)
loss = loss / config.gradient_accumulation_steps
scaler.scale(loss).backward()
if (iter + 1) % config.gradient_accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
else:
logits, loss = model(x, y)
loss = loss / config.gradient_accumulation_steps
loss.backward()
if (iter + 1) % config.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
# Calculate metrics
iter_time = time.time() - iter_start
tokens_per_sec = config.batch_size * config.block_size / iter_time
# Evaluation and logging
if iter % config.eval_interval == 0:
val_loss = evaluate_loss(model, train_loader, config)
logger.log_step(iter, loss.item(), val_loss, lr, tokens_per_sec)
if val_loss < best_val_loss:
best_val_loss = val_loss
no_improvement_count = 0
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'val_loss': val_loss,
'iter': iter,
'config': model_config
}, 'best_model.pt')
logger.log_message(f"New best model saved with validation loss: {val_loss:.6f}")
else:
no_improvement_count += 1
if val_loss < 0.099999:
logger.log_message(f"Target loss achieved at iteration {iter}")
logger.log_message(f"Final validation loss: {val_loss:.6f}")
break
if no_improvement_count >= 5:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.5
no_improvement_count = 0
logger.log_message("Reducing learning rate due to no improvement")
logger.finish()
return model
def generate_text(model, prompt, max_length=100, temperature=0.7):
model.eval()
device = model.device
enc = tiktoken.get_encoding('gpt2')
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device)
with torch.no_grad():
output_sequence = []
for _ in range(max_length):
outputs = model(input_ids)
logits = outputs[0] if isinstance(outputs, tuple) else outputs
next_token_logits = logits[:, -1, :]
# Apply temperature
next_token_logits = next_token_logits / temperature
probs = F.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
output_sequence.append(next_token.item())
input_ids = torch.cat([input_ids, next_token], dim=1)
return enc.decode(output_sequence)
if __name__ == "__main__":
# Train the model
model = train_model()
# Create and launch Gradio interface
def predict(prompt, length, temp=0.7):
return generate_text(model, prompt, length, temp)
iface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(lines=2, label="Enter your prompt"),
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature", step=0.1)
],
outputs=gr.Textbox(lines=5, label="Generated Text"),
title="Custom Transformer Text Generator",
description="Enter a prompt and adjust parameters to generate text"
)
iface.launch(share=True) |