Spaces:
Running
on
Zero
Running
on
Zero
import base64 | |
from typing import cast | |
import pathlib | |
import gradio as gr | |
import spaces | |
import torch | |
from colpali_engine.models import ColQwen2, ColQwen2Processor | |
from mistral_common.protocol.instruct.messages import ( | |
ImageURLChunk, | |
TextChunk, | |
UserMessage, | |
) | |
from mistral_common.protocol.instruct.request import ChatCompletionRequest | |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
from mistral_inference.generate import generate | |
from mistral_inference.transformer import Transformer | |
from pdf2image import convert_from_path | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
PIXTAL_MODEL_ID = "mistral-community--pixtral-12b-240910" | |
PIXTRAL_MODEL_SNAPSHOT = "95758896fcf4691ec9674f29ec90d1441d9d26d2" | |
PIXTRAL_MODEL_PATH = ( | |
pathlib.Path().home() | |
/ f".cache/huggingface/hub/models--{PIXTAL_MODEL_ID}/snapshots/{PIXTRAL_MODEL_SNAPSHOT}" | |
) | |
COLQWEN_BASE_MODEL_ID = "vidore--colqwen2-base" | |
COLQWEN_BASE_MODEL_SNAPSHOT = "c722b912b50b14e404b91679db710fa2e1c6a762" | |
COLQWEN_BASE_MODEL_PATH = ( | |
pathlib.Path().home() | |
/ f".cache/huggingface/hub/models--{COLQWEN_BASE_MODEL_ID}/snapshots/{COLQWEN_BASE_MODEL_SNAPSHOT}" | |
) | |
COLQWEN_MODEL_ID = "vidore--colqwen2-v0.1" | |
COLQWEN_MODEL_SNAPSHOT = "6b9ef3c32c97c0bb3be99bc35a05d9f30e0cada5" | |
COLQWEN_MODEL_PATH = ( | |
pathlib.Path().home() | |
/ f".cache/huggingface/hub/models--{COLQWEN_MODEL_ID}/snapshots/{COLQWEN_MODEL_SNAPSHOT}" | |
) | |
def image_to_base64(image_path): | |
with open(image_path, "rb") as img: | |
encoded_string = base64.b64encode(img.read()).decode("utf-8") | |
return f"data:image/jpeg;base64,{encoded_string}" | |
def pixtral_inference( | |
images, | |
text, | |
): | |
if len(images) == 0: | |
raise gr.Error("No images for generation") | |
if text == "": | |
raise gr.Error("No query for generation") | |
tokenizer = MistralTokenizer.from_file(f"{PIXTRAL_MODEL_PATH}/tekken.json") | |
model = Transformer.from_folder(PIXTRAL_MODEL_PATH) | |
messages = [ | |
UserMessage( | |
content=[ImageURLChunk(image_url=image_to_base64(i[0])) for i in images] | |
+ [TextChunk(text=text)] | |
) | |
] | |
completion_request = ChatCompletionRequest(messages=messages) | |
encoded = tokenizer.encode_chat_completion(completion_request) | |
images = encoded.images | |
tokens = encoded.tokens | |
out_tokens, _ = generate( | |
[tokens], | |
model, | |
images=[images], | |
max_tokens=512, | |
temperature=0.45, | |
eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id, | |
) | |
result = tokenizer.decode(out_tokens[0]) | |
return result | |
def retrieve(query: str, ds, images, k): | |
if len(images) == 0: | |
raise gr.Error("No docs/images for retrieval") | |
if query == "": | |
raise gr.Error("No query for retrieval") | |
model = ColQwen2.from_pretrained( | |
COLQWEN_BASE_MODEL_PATH, | |
torch_dtype=torch.bfloat16, | |
device_map="cuda", | |
).eval() | |
model.load_adapter(COLQWEN_MODEL_PATH) | |
model = model.eval() | |
processor = cast( | |
ColQwen2Processor, ColQwen2Processor.from_pretrained(COLQWEN_MODEL_PATH) | |
) | |
qs = [] | |
with torch.no_grad(): | |
batch_query = processor.process_queries([query]) | |
batch_query = {k: v.to("cuda") for k, v in batch_query.items()} | |
embeddings_query = model(**batch_query) | |
qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) | |
scores = processor.score(qs, ds).numpy() | |
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] | |
results = [] | |
for idx in top_k_indices: | |
results.append((images[idx], f"Score {scores[0][idx]:.2f}")) | |
del model | |
del processor | |
torch.cuda.empty_cache() | |
return results | |
def index(files, ds): | |
images = convert_files(files) | |
return index_gpu(images, ds) | |
def convert_files(files): | |
images = [] | |
for f in files: | |
images.extend(convert_from_path(f, thread_count=4)) | |
if len(images) >= 150: | |
raise gr.Error("The number of images in the dataset should be less than 150.") | |
return images | |
def index_gpu(images, ds): | |
model = ColQwen2.from_pretrained( | |
COLQWEN_BASE_MODEL_PATH, | |
torch_dtype=torch.bfloat16, | |
device_map="cuda", | |
).eval() | |
model.load_adapter(COLQWEN_MODEL_PATH) | |
model = model.eval() | |
processor = cast( | |
ColQwen2Processor, ColQwen2Processor.from_pretrained(COLQWEN_MODEL_PATH) | |
) | |
# run inference - docs | |
dataloader = DataLoader( | |
images, | |
batch_size=4, | |
shuffle=False, | |
collate_fn=lambda x: processor.process_images(x), | |
) | |
for batch_doc in tqdm(dataloader): | |
with torch.no_grad(): | |
batch_doc = {k: v.to("cuda") for k, v in batch_doc.items()} | |
embeddings_doc = model(**batch_doc) | |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) | |
del model | |
del processor | |
torch.cuda.empty_cache() | |
return f"Uploaded and converted {len(images)} pages", ds, images | |
def get_example(): | |
return [ | |
[["plants_and_people.pdf"], "What is the global population in 2050 ? "], | |
[["plants_and_people.pdf"], "Where was Teosinte domesticated ?"], | |
] | |
css = """ | |
#title-container { | |
margin: 0 auto; | |
max-width: 800px; | |
text-align: center; | |
} | |
#col-container { | |
margin: 0 auto; | |
max-width: 600px; | |
} | |
""" | |
file = gr.File(file_types=["pdf"], file_count="multiple", label="PDFs") | |
query = gr.Textbox("", placeholder="Enter your query here", label="Query") | |
with gr.Blocks( | |
title="Document Question Answering with ColQwen & Pixtral", | |
theme=gr.themes.Soft(), | |
css=css, | |
) as demo: | |
with gr.Row(elem_id="title-container"): | |
gr.Markdown("""# Document Question Answering with ColQwen & Pixtral""") | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
gr.Examples( | |
examples=get_example(), | |
inputs=[file, query], | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Markdown("## Index PDFs") | |
file.render() | |
convert_button = gr.Button("π Run", variant="primary") | |
message = gr.Textbox("Files not yet uploaded", label="Status") | |
embeds = gr.State(value=[]) | |
imgs = gr.State(value=[]) | |
img_chunk = gr.State(value=[]) | |
with gr.Column(scale=3): | |
gr.Markdown("## Retrieve with ColQwen and answer with Pixtral") | |
query.render() | |
k = gr.Slider( | |
minimum=1, | |
maximum=4, | |
step=1, | |
label="Number of docs to retrieve", | |
value=1, | |
) | |
answer_button = gr.Button("π Run", variant="primary") | |
output_gallery = gr.Gallery( | |
label="Retrieved docs", height=400, show_label=True, interactive=False | |
) | |
output = gr.Textbox(label="Answer", lines=2, interactive=False) | |
convert_button.click( | |
index, inputs=[file, embeds], outputs=[message, embeds, imgs] | |
) | |
answer_button.click( | |
retrieve, inputs=[query, embeds, imgs, k], outputs=[output_gallery] | |
).then(pixtral_inference, inputs=[output_gallery, query], outputs=[output]) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() | |