File size: 7,433 Bytes
18fd83d
 
 
 
 
 
83580ca
18fd83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import base64
from typing import cast
import pathlib
import gradio as gr
import spaces
import torch
from colpali_engine.models import ColQwen2, ColQwen2Processor
from mistral_common.protocol.instruct.messages import (
    ImageURLChunk,
    TextChunk,
    UserMessage,
)
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_inference.generate import generate
from mistral_inference.transformer import Transformer
from pdf2image import convert_from_path
from torch.utils.data import DataLoader
from tqdm import tqdm

PIXTAL_MODEL_ID = "mistral-community--pixtral-12b-240910"
PIXTRAL_MODEL_SNAPSHOT = "95758896fcf4691ec9674f29ec90d1441d9d26d2"
PIXTRAL_MODEL_PATH = (
    pathlib.Path().home()
    / f".cache/huggingface/hub/models--{PIXTAL_MODEL_ID}/snapshots/{PIXTRAL_MODEL_SNAPSHOT}"
)

COLQWEN_BASE_MODEL_ID = "vidore--colqwen2-base"
COLQWEN_BASE_MODEL_SNAPSHOT = "c722b912b50b14e404b91679db710fa2e1c6a762"
COLQWEN_BASE_MODEL_PATH = (
    pathlib.Path().home()
    / f".cache/huggingface/hub/models--{COLQWEN_BASE_MODEL_ID}/snapshots/{COLQWEN_BASE_MODEL_SNAPSHOT}"
)
COLQWEN_MODEL_ID = "vidore--colqwen2-v0.1"
COLQWEN_MODEL_SNAPSHOT = "6b9ef3c32c97c0bb3be99bc35a05d9f30e0cada5"
COLQWEN_MODEL_PATH = (
    pathlib.Path().home()
    / f".cache/huggingface/hub/models--{COLQWEN_MODEL_ID}/snapshots/{COLQWEN_MODEL_SNAPSHOT}"
)


def image_to_base64(image_path):
    with open(image_path, "rb") as img:
        encoded_string = base64.b64encode(img.read()).decode("utf-8")
    return f"data:image/jpeg;base64,{encoded_string}"


@spaces.GPU(duration=60)
def pixtral_inference(
    images,
    text,
):
    if len(images) == 0:
        raise gr.Error("No images for generation")
    if text == "":
        raise gr.Error("No query for generation")
    tokenizer = MistralTokenizer.from_file(f"{PIXTRAL_MODEL_PATH}/tekken.json")
    model = Transformer.from_folder(PIXTRAL_MODEL_PATH)

    messages = [
        UserMessage(
            content=[ImageURLChunk(image_url=image_to_base64(i[0])) for i in images]
            + [TextChunk(text=text)]
        )
    ]

    completion_request = ChatCompletionRequest(messages=messages)

    encoded = tokenizer.encode_chat_completion(completion_request)

    images = encoded.images
    tokens = encoded.tokens

    out_tokens, _ = generate(
        [tokens],
        model,
        images=[images],
        max_tokens=512,
        temperature=0.45,
        eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id,
    )
    result = tokenizer.decode(out_tokens[0])
    return result


@spaces.GPU(duration=60)
def retrieve(query: str, ds, images, k):
    if len(images) == 0:
        raise gr.Error("No docs/images for retrieval")
    if query == "":
        raise gr.Error("No query for retrieval")

    model = ColQwen2.from_pretrained(
        COLQWEN_BASE_MODEL_PATH,
        torch_dtype=torch.bfloat16,
        device_map="cuda",
    ).eval()

    model.load_adapter(COLQWEN_MODEL_PATH)
    model = model.eval()
    processor = cast(
        ColQwen2Processor, ColQwen2Processor.from_pretrained(COLQWEN_MODEL_PATH)
    )

    qs = []
    with torch.no_grad():
        batch_query = processor.process_queries([query])
        batch_query = {k: v.to("cuda") for k, v in batch_query.items()}
        embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    scores = processor.score(qs, ds).numpy()
    top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
    results = []
    for idx in top_k_indices:
        results.append((images[idx], f"Score {scores[0][idx]:.2f}"))
    del model
    del processor
    torch.cuda.empty_cache()
    return results


def index(files, ds):
    images = convert_files(files)
    return index_gpu(images, ds)


def convert_files(files):
    images = []
    for f in files:
        images.extend(convert_from_path(f, thread_count=4))

    if len(images) >= 150:
        raise gr.Error("The number of images in the dataset should be less than 150.")
    return images


@spaces.GPU(duration=60)
def index_gpu(images, ds):
    model = ColQwen2.from_pretrained(
        COLQWEN_BASE_MODEL_PATH,
        torch_dtype=torch.bfloat16,
        device_map="cuda",
    ).eval()

    model.load_adapter(COLQWEN_MODEL_PATH)
    model = model.eval()
    processor = cast(
        ColQwen2Processor, ColQwen2Processor.from_pretrained(COLQWEN_MODEL_PATH)
    )

    # run inference - docs
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: processor.process_images(x),
    )

    for batch_doc in tqdm(dataloader):
        with torch.no_grad():
            batch_doc = {k: v.to("cuda") for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    del model
    del processor
    torch.cuda.empty_cache()
    return f"Uploaded and converted {len(images)} pages", ds, images


def get_example():
    return [
        [["plants_and_people.pdf"], "What is the global population in 2050 ? "],
        [["plants_and_people.pdf"], "Where was Teosinte domesticated ?"],
    ]


css = """
#title-container {
    margin: 0 auto;
    max-width: 800px;
    text-align: center;
}
#col-container {
    margin: 0 auto;
    max-width: 600px;
}
"""
file = gr.File(file_types=["pdf"], file_count="multiple", label="PDFs")
query = gr.Textbox("", placeholder="Enter your query here", label="Query")

with gr.Blocks(
    title="Document Question Answering with ColQwen & Pixtral",
    theme=gr.themes.Soft(),
    css=css,
) as demo:
    with gr.Row(elem_id="title-container"):
        gr.Markdown("""# Document Question Answering with ColQwen & Pixtral""")
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            gr.Examples(
                examples=get_example(),
                inputs=[file, query],
            )

        with gr.Row():
            with gr.Column(scale=2):
                gr.Markdown("## Index PDFs")
                file.render()
                convert_button = gr.Button("πŸ”„ Run", variant="primary")
                message = gr.Textbox("Files not yet uploaded", label="Status")
                embeds = gr.State(value=[])
                imgs = gr.State(value=[])
                img_chunk = gr.State(value=[])

            with gr.Column(scale=3):
                gr.Markdown("## Retrieve with ColQwen and answer with Pixtral")
                query.render()
                k = gr.Slider(
                    minimum=1,
                    maximum=4,
                    step=1,
                    label="Number of docs to retrieve",
                    value=1,
                )
                answer_button = gr.Button("πŸƒ Run", variant="primary")

        output_gallery = gr.Gallery(
            label="Retrieved docs", height=400, show_label=True, interactive=False
        )
        output = gr.Textbox(label="Answer", lines=2, interactive=False)

        convert_button.click(
            index, inputs=[file, embeds], outputs=[message, embeds, imgs]
        )
        answer_button.click(
            retrieve, inputs=[query, embeds, imgs, k], outputs=[output_gallery]
        ).then(pixtral_inference, inputs=[output_gallery, query], outputs=[output])


if __name__ == "__main__":
    demo.queue(max_size=10).launch()