mast3r-3dgs / demo /gs_train.py
ostapagon's picture
Add demo file. Change sdk to gradio. Add wild-gaussian-splatting submodule
6db5fd9
raw
history blame
12 kB
import sys
import os
import torch
from random import randint
import uuid
from tqdm.auto import tqdm
import gradio as gr
import importlib.util
# Add the path to the gaussian-splatting repository
gaussian_splatting_path = 'wild-gaussian-splatting/gaussian-splatting/'
sys.path.append(gaussian_splatting_path)
# Import necessary modules from the gaussian-splatting directory
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from utils.image_utils import psnr
# Dynamically import the train module from the gaussian-splatting directory
train_spec = importlib.util.spec_from_file_location("gaussian_splatting_train", os.path.join(gaussian_splatting_path, "train.py"))
gaussian_splatting_train = importlib.util.module_from_spec(train_spec)
train_spec.loader.exec_module(gaussian_splatting_train)
# Import the necessary functions from the dynamically loaded module
prepare_output_and_logger = gaussian_splatting_train.prepare_output_and_logger
training_report = gaussian_splatting_train.training_report
from dataclasses import dataclass, field
@dataclass
class PipelineParams:
convert_SHs_python: bool = False
compute_cov3D_python: bool = False
debug: bool = False
@dataclass
class OptimizationParams:
iterations: int = 7000
position_lr_init: float = 0.00016
position_lr_final: float = 0.0000016
position_lr_delay_mult: float = 0.01
position_lr_max_steps: int = 30_000
feature_lr: float = 0.0025
opacity_lr: float = 0.05
scaling_lr: float = 0.005
rotation_lr: float = 0.001
percent_dense: float = 0.01
lambda_dssim: float = 0.2
densification_interval: int = 100
opacity_reset_interval: int = 3000
densify_from_iter: int = 500
densify_until_iter: int = 15_000
densify_grad_threshold: float = 0.0002
random_background: bool = False
@dataclass
class ModelParams:
sh_degree: int = 3
source_path: str = "../data/scenes/turtle/" # Default path, adjust as needed
model_path: str = ""
images: str = "images"
resolution: int = -1
white_background: bool = True
data_device: str = "cuda"
eval: bool = False
@dataclass
class TrainingArgs:
ip: str = "0.0.0.0"
port: int = 6007
debug_from: int = -1
detect_anomaly: bool = False
test_iterations: list[int] = field(default_factory=lambda: [7_000, 30_000])
save_iterations: list[int] = field(default_factory=lambda: [7_000, 30_000])
quiet: bool = False
checkpoint_iterations: list[int] = field(default_factory=lambda: [7_000, 15_000, 30_000])
start_checkpoint: str = None
def train(
data_source_path, sh_degree, model_path, images, resolution, white_background, data_device, eval,
convert_SHs_python, compute_cov3D_python, debug,
iterations, position_lr_init, position_lr_final, position_lr_delay_mult,
position_lr_max_steps, feature_lr, opacity_lr, scaling_lr, rotation_lr,
percent_dense, lambda_dssim, densification_interval, opacity_reset_interval,
densify_from_iter, densify_until_iter, densify_grad_threshold, random_background
):
print(data_source_path)
# Create instances of the parameter dataclasses
dataset = ModelParams(
sh_degree=sh_degree,
source_path=data_source_path,
model_path=model_path,
images=images,
resolution=resolution,
white_background=white_background,
data_device=data_device,
eval=eval
)
pipe = PipelineParams(
convert_SHs_python=convert_SHs_python,
compute_cov3D_python=compute_cov3D_python,
debug=debug
)
opt = OptimizationParams(
iterations=iterations,
position_lr_init=position_lr_init,
position_lr_final=position_lr_final,
position_lr_delay_mult=position_lr_delay_mult,
position_lr_max_steps=position_lr_max_steps,
feature_lr=feature_lr,
opacity_lr=opacity_lr,
scaling_lr=scaling_lr,
rotation_lr=rotation_lr,
percent_dense=percent_dense,
lambda_dssim=lambda_dssim,
densification_interval=densification_interval,
opacity_reset_interval=opacity_reset_interval,
densify_from_iter=densify_from_iter,
densify_until_iter=densify_until_iter,
densify_grad_threshold=densify_grad_threshold,
random_background=random_background
)
args = TrainingArgs()
testing_iterations = args.test_iterations
saving_iterations = args.save_iterations
checkpoint_iterations = args.checkpoint_iterations
debug_from = args.debug_from
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
first_iter = 0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
point_cloud_path = ""
progress = gr.Progress() # Initialize the progress bar
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
progress(iteration / opt.iterations) # Update Gradio progress bar
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration == opt.iterations):
point_cloud_path = os.path.join(os.path.join(dataset.model_path, "point_cloud/iteration_{}".format(iteration)), "point_cloud.ply")
print("\n[ITER {}] Saving Gaussians to {}".format(iteration, point_cloud_path))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration == opt.iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
from os import makedirs
from utils.graphics_utils import focal2fov, fov2focal, getProjectionMatrix
import torchvision
import subprocess
@torch.no_grad()
def render_path(dataset : ModelParams, iteration : int, pipeline : PipelineParams, render_resize_method='crop'):
"""
render_resize_method: crop, pad
"""
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
iteration = scene.loaded_iter
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
model_path = dataset.model_path
name = "render"
views = scene.getRenderCameras()
# print(len(views))
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
if render_resize_method == 'crop':
image_size = 256
elif render_resize_method == 'pad':
image_size = max(view.image_width, view.image_height)
else:
raise NotImplementedError
view.original_image = torch.zeros((3, image_size, image_size), device=view.original_image.device)
focal_length_x = fov2focal(view.FoVx, view.image_width)
focal_length_y = fov2focal(view.FoVy, view.image_height)
view.image_width = image_size
view.image_height = image_size
view.FoVx = focal2fov(focal_length_x, image_size)
view.FoVy = focal2fov(focal_length_y, image_size)
view.projection_matrix = getProjectionMatrix(znear=view.znear, zfar=view.zfar, fovX=view.FoVx, fovY=view.FoVy).transpose(0,1).cuda().float()
view.full_proj_transform = (view.world_view_transform.unsqueeze(0).bmm(view.projection_matrix.unsqueeze(0))).squeeze(0)
render_pkg = render(view, gaussians, pipeline, background)
rendering = render_pkg["render"]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
# Use ffmpeg to output video
renders_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders.mp4")
# Use ffmpeg to output video
subprocess.run(["ffmpeg", "-y",
"-framerate", "24",
"-i", os.path.join(render_path, "%05d.png"),
"-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2",
"-c:v", "libx264",
"-pix_fmt", "yuv420p",
"-crf", "23",
# "-pix_fmt", "yuv420p", # Set pixel format for compatibility
renders_path], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL
)
return renders_path
renders_path = render_path(dataset, opt.iterations, pipe, render_resize_method='crop')
return renders_path, point_cloud_path