Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,977 Bytes
6db5fd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import sys
import os
import torch
from random import randint
import uuid
from tqdm.auto import tqdm
import gradio as gr
import importlib.util
# Add the path to the gaussian-splatting repository
gaussian_splatting_path = 'wild-gaussian-splatting/gaussian-splatting/'
sys.path.append(gaussian_splatting_path)
# Import necessary modules from the gaussian-splatting directory
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from utils.image_utils import psnr
# Dynamically import the train module from the gaussian-splatting directory
train_spec = importlib.util.spec_from_file_location("gaussian_splatting_train", os.path.join(gaussian_splatting_path, "train.py"))
gaussian_splatting_train = importlib.util.module_from_spec(train_spec)
train_spec.loader.exec_module(gaussian_splatting_train)
# Import the necessary functions from the dynamically loaded module
prepare_output_and_logger = gaussian_splatting_train.prepare_output_and_logger
training_report = gaussian_splatting_train.training_report
from dataclasses import dataclass, field
@dataclass
class PipelineParams:
convert_SHs_python: bool = False
compute_cov3D_python: bool = False
debug: bool = False
@dataclass
class OptimizationParams:
iterations: int = 7000
position_lr_init: float = 0.00016
position_lr_final: float = 0.0000016
position_lr_delay_mult: float = 0.01
position_lr_max_steps: int = 30_000
feature_lr: float = 0.0025
opacity_lr: float = 0.05
scaling_lr: float = 0.005
rotation_lr: float = 0.001
percent_dense: float = 0.01
lambda_dssim: float = 0.2
densification_interval: int = 100
opacity_reset_interval: int = 3000
densify_from_iter: int = 500
densify_until_iter: int = 15_000
densify_grad_threshold: float = 0.0002
random_background: bool = False
@dataclass
class ModelParams:
sh_degree: int = 3
source_path: str = "../data/scenes/turtle/" # Default path, adjust as needed
model_path: str = ""
images: str = "images"
resolution: int = -1
white_background: bool = True
data_device: str = "cuda"
eval: bool = False
@dataclass
class TrainingArgs:
ip: str = "0.0.0.0"
port: int = 6007
debug_from: int = -1
detect_anomaly: bool = False
test_iterations: list[int] = field(default_factory=lambda: [7_000, 30_000])
save_iterations: list[int] = field(default_factory=lambda: [7_000, 30_000])
quiet: bool = False
checkpoint_iterations: list[int] = field(default_factory=lambda: [7_000, 15_000, 30_000])
start_checkpoint: str = None
def train(
data_source_path, sh_degree, model_path, images, resolution, white_background, data_device, eval,
convert_SHs_python, compute_cov3D_python, debug,
iterations, position_lr_init, position_lr_final, position_lr_delay_mult,
position_lr_max_steps, feature_lr, opacity_lr, scaling_lr, rotation_lr,
percent_dense, lambda_dssim, densification_interval, opacity_reset_interval,
densify_from_iter, densify_until_iter, densify_grad_threshold, random_background
):
print(data_source_path)
# Create instances of the parameter dataclasses
dataset = ModelParams(
sh_degree=sh_degree,
source_path=data_source_path,
model_path=model_path,
images=images,
resolution=resolution,
white_background=white_background,
data_device=data_device,
eval=eval
)
pipe = PipelineParams(
convert_SHs_python=convert_SHs_python,
compute_cov3D_python=compute_cov3D_python,
debug=debug
)
opt = OptimizationParams(
iterations=iterations,
position_lr_init=position_lr_init,
position_lr_final=position_lr_final,
position_lr_delay_mult=position_lr_delay_mult,
position_lr_max_steps=position_lr_max_steps,
feature_lr=feature_lr,
opacity_lr=opacity_lr,
scaling_lr=scaling_lr,
rotation_lr=rotation_lr,
percent_dense=percent_dense,
lambda_dssim=lambda_dssim,
densification_interval=densification_interval,
opacity_reset_interval=opacity_reset_interval,
densify_from_iter=densify_from_iter,
densify_until_iter=densify_until_iter,
densify_grad_threshold=densify_grad_threshold,
random_background=random_background
)
args = TrainingArgs()
testing_iterations = args.test_iterations
saving_iterations = args.save_iterations
checkpoint_iterations = args.checkpoint_iterations
debug_from = args.debug_from
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
first_iter = 0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
point_cloud_path = ""
progress = gr.Progress() # Initialize the progress bar
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
progress(iteration / opt.iterations) # Update Gradio progress bar
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration == opt.iterations):
point_cloud_path = os.path.join(os.path.join(dataset.model_path, "point_cloud/iteration_{}".format(iteration)), "point_cloud.ply")
print("\n[ITER {}] Saving Gaussians to {}".format(iteration, point_cloud_path))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration == opt.iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
from os import makedirs
from utils.graphics_utils import focal2fov, fov2focal, getProjectionMatrix
import torchvision
import subprocess
@torch.no_grad()
def render_path(dataset : ModelParams, iteration : int, pipeline : PipelineParams, render_resize_method='crop'):
"""
render_resize_method: crop, pad
"""
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
iteration = scene.loaded_iter
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
model_path = dataset.model_path
name = "render"
views = scene.getRenderCameras()
# print(len(views))
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
if render_resize_method == 'crop':
image_size = 256
elif render_resize_method == 'pad':
image_size = max(view.image_width, view.image_height)
else:
raise NotImplementedError
view.original_image = torch.zeros((3, image_size, image_size), device=view.original_image.device)
focal_length_x = fov2focal(view.FoVx, view.image_width)
focal_length_y = fov2focal(view.FoVy, view.image_height)
view.image_width = image_size
view.image_height = image_size
view.FoVx = focal2fov(focal_length_x, image_size)
view.FoVy = focal2fov(focal_length_y, image_size)
view.projection_matrix = getProjectionMatrix(znear=view.znear, zfar=view.zfar, fovX=view.FoVx, fovY=view.FoVy).transpose(0,1).cuda().float()
view.full_proj_transform = (view.world_view_transform.unsqueeze(0).bmm(view.projection_matrix.unsqueeze(0))).squeeze(0)
render_pkg = render(view, gaussians, pipeline, background)
rendering = render_pkg["render"]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
# Use ffmpeg to output video
renders_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders.mp4")
# Use ffmpeg to output video
subprocess.run(["ffmpeg", "-y",
"-framerate", "24",
"-i", os.path.join(render_path, "%05d.png"),
"-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2",
"-c:v", "libx264",
"-pix_fmt", "yuv420p",
"-crf", "23",
# "-pix_fmt", "yuv420p", # Set pixel format for compatibility
renders_path], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL
)
return renders_path
renders_path = render_path(dataset, opt.iterations, pipe, render_resize_method='crop')
return renders_path, point_cloud_path |