CryptoVision / app.py
openfree's picture
Update app.py
0c8ee71 verified
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import logging
import plotly.graph_objs as go
import math
import numpy as np
logging.basicConfig(level=logging.INFO)
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H",
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W",
}
def calculate_technical_indicators(df):
# Calculate RSI
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# Calculate MACD
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
# Calculate Bollinger Bands
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
def create_technical_charts(df):
# Price and Bollinger Bands
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
# RSI
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
# MACD
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
def fetch_okx_symbols():
"""
Fetch spot symbols from OKX.
"""
logging.info("Fetching symbols from OKX Spot tickers...")
try:
resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
logging.error(f"Non-zero code returned: {json_data}")
return ["BTC-USDT"] # Default fallback
data = json_data.get("data", [])
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
if not symbols:
return ["BTC-USDT"]
# Ensure BTC-USDT is first in the list
if "BTC-USDT" in symbols:
symbols.remove("BTC-USDT")
symbols.insert(0, "BTC-USDT")
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
return symbols
except Exception as e:
logging.error(f"Error fetching OKX symbols: {e}")
return ["BTC-USDT"]
def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None):
params = {
"instId": symbol,
"bar": timeframe,
"limit": limit
}
if after is not None:
params["after"] = str(after)
if before is not None:
params["before"] = str(before)
logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}")
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
logging.error(msg)
return pd.DataFrame(), msg
items = json_data.get("data", [])
if not items:
return pd.DataFrame(), ""
columns = ["ts", "o", "h", "l", "c", "vol", "volCcy", "volCcyQuote", "confirm"]
df = pd.DataFrame(items, columns=columns)
df.rename(columns={
"ts": "timestamp",
"o": "open",
"h": "high",
"l": "low",
"c": "close"
}, inplace=True)
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
df[numeric_cols] = df[numeric_cols].astype(float)
return df, ""
except Exception as e:
err_msg = f"Error fetching candles chunk for {symbol}: {e}"
logging.error(err_msg)
return pd.DataFrame(), err_msg
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
"""
Fetch historical candle data
"""
logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe}")
calls_needed = math.ceil(total / 300.0)
all_data = []
after_ts = None
for _ in range(calls_needed):
df_chunk, err = fetch_okx_candles_chunk(
symbol, timeframe, limit=300, after=after_ts
)
if err:
return pd.DataFrame(), err
if df_chunk.empty:
break
earliest_ts = df_chunk["timestamp"].iloc[-1]
after_ts = int(earliest_ts.timestamp() * 1000 - 1)
all_data.append(df_chunk)
if len(df_chunk) < 300:
break
if not all_data:
return pd.DataFrame(), "No data returned."
df_all = pd.concat(all_data, ignore_index=True)
df_all.sort_values(by="timestamp", inplace=True)
df_all.reset_index(drop=True, inplace=True)
# Calculate technical indicators
df_all = calculate_technical_indicators(df_all)
logging.info(f"Fetched {len(df_all)} rows for {symbol}.")
return df_all, ""
def prepare_data_for_prophet(df):
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(
df_prophet,
periods=10,
freq="h",
daily_seasonality=False,
weekly_seasonality=False,
yearly_seasonality=False,
seasonality_mode="additive",
changepoint_prior_scale=0.05,
):
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
logging.error(f"Forecast error: {e}")
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
periods=forecast_steps,
freq=freq,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
def create_forecast_plot(forecast_df):
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def predict(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles)
if err:
return pd.DataFrame(), pd.DataFrame(), err
df_prophet = prepare_data_for_prophet(df_raw)
freq = "h" if "h" in timeframe.lower() else "d"
future_df, err2 = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if err2:
return pd.DataFrame(), pd.DataFrame(), err2
return df_raw, future_df, ""
def display_forecast(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
logging.info(f"Processing forecast request for {symbol}")
df_raw, forecast_df, error = predict(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if error:
return None, None, None, None, f"Error: {error}"
forecast_plot = create_forecast_plot(forecast_df)
tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df
def main():
symbols = fetch_okx_symbols()
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
gr.Markdown("# CryptoVision")
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-CryptoVision.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-CryptoVision.hf.space&countColor=%23263759" />
</a>""")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Market Selection")
symbol_dd = gr.Dropdown(
label="Trading Pair",
choices=symbols,
value="BTC-USDT"
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=list(TIMEFRAME_MAPPING.keys()),
value="1h"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Forecast Parameters")
forecast_steps_slider = gr.Slider(
label="Forecast Steps",
minimum=1,
maximum=100,
value=24,
step=1
)
total_candles_slider = gr.Slider(
label="Historical Candles",
minimum=300,
maximum=3000,
value=2000,
step=100
)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("### Advanced Settings")
with gr.Row():
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
seasonality_mode_dd = gr.Dropdown(
label="Seasonality Mode",
choices=["additive", "multiplicative"],
value="additive"
)
changepoint_scale_slider = gr.Slider(
label="Changepoint Prior Scale",
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05
)
with gr.Row():
forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")
with gr.Row():
forecast_plot = gr.Plot(label="Price Forecast")
with gr.Row():
tech_plot = gr.Plot(label="Technical Analysis")
rsi_plot = gr.Plot(label="RSI Indicator")
with gr.Row():
macd_plot = gr.Plot(label="MACD")
with gr.Row():
forecast_df = gr.Dataframe(
label="Forecast Data",
headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
)
forecast_btn.click(
fn=display_forecast,
inputs=[
symbol_dd,
timeframe_dd,
forecast_steps_slider,
total_candles_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
],
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
)
return demo
if __name__ == "__main__":
app = main()
app.launch()