Spaces:
Running
Running
File size: 14,871 Bytes
5024af9 2a14d16 b25337f b72b034 5024af9 2a14d16 5024af9 0ff9cc9 5024af9 b72b034 b25337f 5024af9 b25337f 5024af9 b72b034 5024af9 b72b034 5024af9 b72b034 5024af9 b72b034 5024af9 b72b034 0ff9cc9 b25337f 5024af9 b25337f b72b034 5024af9 b25337f 5024af9 b72b034 0ff9cc9 5024af9 0ff9cc9 5024af9 b25337f 5024af9 b25337f b72b034 b25337f b72b034 b25337f b72b034 b25337f b72b034 b25337f b72b034 b25337f 2cc56aa 5024af9 b25337f 5024af9 b72b034 5024af9 b25337f 5024af9 b25337f b72b034 b25337f 5024af9 b25337f 5024af9 f1bfa96 5024af9 2cc56aa 2a14d16 b72b034 2a14d16 b72b034 2a14d16 b72b034 2a14d16 b72b034 2a14d16 b25337f 2a14d16 b72b034 2a14d16 b72b034 2a14d16 b72b034 2a14d16 2cc56aa 5024af9 b25337f 5024af9 b25337f 5024af9 b72b034 5024af9 f1bfa96 b25337f 5024af9 b72b034 5024af9 b25337f b72b034 b25337f b72b034 5024af9 b72b034 5024af9 b72b034 b25337f 5024af9 b72b034 9b5766e 2cc56aa 0c8ee71 2cc56aa b72b034 c0ea652 b72b034 c0ea652 b72b034 0c8ee71 b72b034 c0ea652 b72b034 5024af9 b25337f b72b034 5024af9 b72b034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import logging
import plotly.graph_objs as go
import math
import numpy as np
logging.basicConfig(level=logging.INFO)
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H",
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W",
}
def calculate_technical_indicators(df):
# Calculate RSI
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# Calculate MACD
exp1 = df['close'].ewm(span=12, adjust=False).mean()
exp2 = df['close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
# Calculate Bollinger Bands
df['MA20'] = df['close'].rolling(window=20).mean()
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
return df
def create_technical_charts(df):
# Price and Bollinger Bands
fig1 = go.Figure()
fig1.add_trace(go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name='Price'
))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
# RSI
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
fig2.add_hline(y=70, line_dash="dash", line_color="red")
fig2.add_hline(y=30, line_dash="dash", line_color="green")
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
# MACD
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
return fig1, fig2, fig3
def fetch_okx_symbols():
"""
Fetch spot symbols from OKX.
"""
logging.info("Fetching symbols from OKX Spot tickers...")
try:
resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
logging.error(f"Non-zero code returned: {json_data}")
return ["BTC-USDT"] # Default fallback
data = json_data.get("data", [])
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
if not symbols:
return ["BTC-USDT"]
# Ensure BTC-USDT is first in the list
if "BTC-USDT" in symbols:
symbols.remove("BTC-USDT")
symbols.insert(0, "BTC-USDT")
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
return symbols
except Exception as e:
logging.error(f"Error fetching OKX symbols: {e}")
return ["BTC-USDT"]
def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None):
params = {
"instId": symbol,
"bar": timeframe,
"limit": limit
}
if after is not None:
params["after"] = str(after)
if before is not None:
params["before"] = str(before)
logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}")
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
logging.error(msg)
return pd.DataFrame(), msg
items = json_data.get("data", [])
if not items:
return pd.DataFrame(), ""
columns = ["ts", "o", "h", "l", "c", "vol", "volCcy", "volCcyQuote", "confirm"]
df = pd.DataFrame(items, columns=columns)
df.rename(columns={
"ts": "timestamp",
"o": "open",
"h": "high",
"l": "low",
"c": "close"
}, inplace=True)
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
df[numeric_cols] = df[numeric_cols].astype(float)
return df, ""
except Exception as e:
err_msg = f"Error fetching candles chunk for {symbol}: {e}"
logging.error(err_msg)
return pd.DataFrame(), err_msg
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
"""
Fetch historical candle data
"""
logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe}")
calls_needed = math.ceil(total / 300.0)
all_data = []
after_ts = None
for _ in range(calls_needed):
df_chunk, err = fetch_okx_candles_chunk(
symbol, timeframe, limit=300, after=after_ts
)
if err:
return pd.DataFrame(), err
if df_chunk.empty:
break
earliest_ts = df_chunk["timestamp"].iloc[-1]
after_ts = int(earliest_ts.timestamp() * 1000 - 1)
all_data.append(df_chunk)
if len(df_chunk) < 300:
break
if not all_data:
return pd.DataFrame(), "No data returned."
df_all = pd.concat(all_data, ignore_index=True)
df_all.sort_values(by="timestamp", inplace=True)
df_all.reset_index(drop=True, inplace=True)
# Calculate technical indicators
df_all = calculate_technical_indicators(df_all)
logging.info(f"Fetched {len(df_all)} rows for {symbol}.")
return df_all, ""
def prepare_data_for_prophet(df):
if df.empty:
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(
df_prophet,
periods=10,
freq="h",
daily_seasonality=False,
weekly_seasonality=False,
yearly_seasonality=False,
seasonality_mode="additive",
changepoint_prior_scale=0.05,
):
if df_prophet.empty:
return pd.DataFrame(), "No data for Prophet."
try:
model = Prophet(
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
logging.error(f"Forecast error: {e}")
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(
df_prophet,
periods=forecast_steps,
freq=freq,
daily_seasonality=daily_seasonality,
weekly_seasonality=weekly_seasonality,
yearly_seasonality=yearly_seasonality,
seasonality_mode=seasonality_mode,
changepoint_prior_scale=changepoint_prior_scale,
)
if err:
return pd.DataFrame(), err
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
def create_forecast_plot(forecast_df):
if forecast_df.empty:
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue", width=2)
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0),
showlegend=True,
name="Lower Bound"
))
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty",
mode="lines",
line=dict(width=0),
name="Upper Bound"
))
fig.update_layout(
title="Price Forecast",
xaxis_title="Time",
yaxis_title="Price",
hovermode="x unified",
template="plotly_white",
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def predict(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles)
if err:
return pd.DataFrame(), pd.DataFrame(), err
df_prophet = prepare_data_for_prophet(df_raw)
freq = "h" if "h" in timeframe.lower() else "d"
future_df, err2 = prophet_wrapper(
df_prophet,
forecast_steps,
freq,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if err2:
return pd.DataFrame(), pd.DataFrame(), err2
return df_raw, future_df, ""
def display_forecast(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
):
logging.info(f"Processing forecast request for {symbol}")
df_raw, forecast_df, error = predict(
symbol,
timeframe,
forecast_steps,
total_candles,
daily_seasonality,
weekly_seasonality,
yearly_seasonality,
seasonality_mode,
changepoint_prior_scale,
)
if error:
return None, None, None, None, f"Error: {error}"
forecast_plot = create_forecast_plot(forecast_df)
tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df
def main():
symbols = fetch_okx_symbols()
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
gr.Markdown("# CryptoVision")
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-CryptoVision.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-CryptoVision.hf.space&countColor=%23263759" />
</a>""")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Market Selection")
symbol_dd = gr.Dropdown(
label="Trading Pair",
choices=symbols,
value="BTC-USDT"
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=list(TIMEFRAME_MAPPING.keys()),
value="1h"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Forecast Parameters")
forecast_steps_slider = gr.Slider(
label="Forecast Steps",
minimum=1,
maximum=100,
value=24,
step=1
)
total_candles_slider = gr.Slider(
label="Historical Candles",
minimum=300,
maximum=3000,
value=2000,
step=100
)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("### Advanced Settings")
with gr.Row():
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
seasonality_mode_dd = gr.Dropdown(
label="Seasonality Mode",
choices=["additive", "multiplicative"],
value="additive"
)
changepoint_scale_slider = gr.Slider(
label="Changepoint Prior Scale",
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05
)
with gr.Row():
forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")
with gr.Row():
forecast_plot = gr.Plot(label="Price Forecast")
with gr.Row():
tech_plot = gr.Plot(label="Technical Analysis")
rsi_plot = gr.Plot(label="RSI Indicator")
with gr.Row():
macd_plot = gr.Plot(label="MACD")
with gr.Row():
forecast_df = gr.Dataframe(
label="Forecast Data",
headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
)
forecast_btn.click(
fn=display_forecast,
inputs=[
symbol_dd,
timeframe_dd,
forecast_steps_slider,
total_candles_slider,
daily_box,
weekly_box,
yearly_box,
seasonality_mode_dd,
changepoint_scale_slider,
],
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
)
return demo
if __name__ == "__main__":
app = main()
app.launch() |