Fix missing evals
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ DESCRIPTION = f"""
|
|
10 |
Evaluation of H4 and community models across a diverse range of benchmarks from [LightEval](https://github.com/huggingface/lighteval). All scores are reported as accuracy.
|
11 |
"""
|
12 |
|
13 |
-
BENCHMARKS_TO_SKIP = ["math", "mini_math", "aimo_math_integer_lvl4-5"]
|
14 |
|
15 |
|
16 |
def get_leaderboard_df():
|
@@ -48,27 +48,34 @@ def get_leaderboard_df():
|
|
48 |
# TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard
|
49 |
if task.lower() == "truthfulqa":
|
50 |
value = data["results"][first_result_key]["truthfulqa_mc2"]
|
|
|
51 |
# IFEval has several metrics but we report just the prompt-loose-acc one
|
52 |
elif task.lower() == "ifeval":
|
53 |
value = data["results"][first_result_key]["prompt_level_loose_acc"]
|
|
|
54 |
# MMLU has several metrics but we report just the average one
|
55 |
elif task.lower() == "mmlu":
|
56 |
value = [v["acc"] for k, v in data["results"].items() if "_average" in k.lower()][0]
|
|
|
57 |
# HellaSwag and ARC reports acc_norm
|
58 |
elif task.lower() in ["hellaswag", "arc"]:
|
59 |
value = data["results"][first_result_key]["acc_norm"]
|
|
|
60 |
# BBH has several metrics but we report just the average one
|
61 |
elif task.lower() == "bbh":
|
62 |
if "all" in data["results"]:
|
63 |
value = data["results"]["all"]["acc"]
|
64 |
else:
|
65 |
value = -100
|
|
|
66 |
# AGIEval reports acc_norm
|
67 |
elif task.lower() == "agieval":
|
68 |
value = data["results"]["all"]["acc_norm"]
|
|
|
69 |
# MATH reports qem
|
70 |
-
elif task.lower() in ["
|
71 |
value = data["results"]["all"]["qem"]
|
|
|
72 |
# For mini_math we report 5 metrics, one for each level and store each one as a separate row in the dataframe
|
73 |
elif task.lower() in ["mini_math_v2"]:
|
74 |
for k, v in data["results"].items():
|
|
|
10 |
Evaluation of H4 and community models across a diverse range of benchmarks from [LightEval](https://github.com/huggingface/lighteval). All scores are reported as accuracy.
|
11 |
"""
|
12 |
|
13 |
+
BENCHMARKS_TO_SKIP = ["math", "mini_math", "aimo_math_integer_lvl4-5", "mini_math_v2"]
|
14 |
|
15 |
|
16 |
def get_leaderboard_df():
|
|
|
48 |
# TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard
|
49 |
if task.lower() == "truthfulqa":
|
50 |
value = data["results"][first_result_key]["truthfulqa_mc2"]
|
51 |
+
df.loc[model_revision, task] = float(value)
|
52 |
# IFEval has several metrics but we report just the prompt-loose-acc one
|
53 |
elif task.lower() == "ifeval":
|
54 |
value = data["results"][first_result_key]["prompt_level_loose_acc"]
|
55 |
+
df.loc[model_revision, task] = float(value)
|
56 |
# MMLU has several metrics but we report just the average one
|
57 |
elif task.lower() == "mmlu":
|
58 |
value = [v["acc"] for k, v in data["results"].items() if "_average" in k.lower()][0]
|
59 |
+
df.loc[model_revision, task] = float(value)
|
60 |
# HellaSwag and ARC reports acc_norm
|
61 |
elif task.lower() in ["hellaswag", "arc"]:
|
62 |
value = data["results"][first_result_key]["acc_norm"]
|
63 |
+
df.loc[model_revision, task] = float(value)
|
64 |
# BBH has several metrics but we report just the average one
|
65 |
elif task.lower() == "bbh":
|
66 |
if "all" in data["results"]:
|
67 |
value = data["results"]["all"]["acc"]
|
68 |
else:
|
69 |
value = -100
|
70 |
+
df.loc[model_revision, task] = float(value)
|
71 |
# AGIEval reports acc_norm
|
72 |
elif task.lower() == "agieval":
|
73 |
value = data["results"]["all"]["acc_norm"]
|
74 |
+
df.loc[model_revision, task] = float(value)
|
75 |
# MATH reports qem
|
76 |
+
elif task.lower() in ["aimo_kaggle", "math_deepseek_cot", "math_deepseek_rl_cot"]:
|
77 |
value = data["results"]["all"]["qem"]
|
78 |
+
df.loc[model_revision, task] = float(value)
|
79 |
# For mini_math we report 5 metrics, one for each level and store each one as a separate row in the dataframe
|
80 |
elif task.lower() in ["mini_math_v2"]:
|
81 |
for k, v in data["results"].items():
|