Spaces:
Running
Running
import tensorflow as tf | |
import cv2 | |
import numpy as np | |
from glob import glob | |
# from models import Yolov4 | |
import gradio as gr | |
# model = Yolov4(weight_path="best.pt", class_name_path='coco_classes.txt') | |
# from ultralytics import YOLO | |
# Load a model | |
# model = YOLO("best.pt") # load a custom model | |
# Predict with the model | |
# results = model("image.jpg", save = True) # predict on an image | |
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') | |
def detect_faces(frame): | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
faces = face_cascade.detectMultiScale(gray, 1.3, 5) | |
print(f"Detected {len(faces)} faces") | |
return len(faces) | |
def detect_faces_in_video(): | |
success, frame = camera.read() | |
if success: | |
num_faces = detect_faces(frame) | |
return int(num_faces) | |
else: | |
return None | |
"""def gradio_wrapper(img): | |
global face_cascade | |
#print(np.shape(img)) | |
results = model.predict(img) # predict on an image | |
try: | |
if max(results[0].boxes.cls) == 0: | |
text = "Man" | |
if max(results[0].boxes.cls) == 1: | |
text = "Women" | |
except: | |
pass | |
return cv2.putText(img, text,(00, 185), cv2.FONT_HERSHEY_SIMPLEX, 1, | |
(0, 0, 255), 2, cv2.LINE_AA, False) | |
# return results | |
""" | |
demo = gr.Interface( | |
detect_faces_in_video, | |
#gr.Image(source="webcam", streaming=True, flip=True), | |
gr.Image(source="webcam", streaming=True), | |
"image", | |
live=True | |
) | |
demo.launch() |