Spaces:
Running
Running
oliverlibaw
commited on
Commit
·
66cf9d4
1
Parent(s):
cd968e2
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,32 @@ import gradio as gr
|
|
7 |
# model = Yolov4(weight_path="best.pt", class_name_path='coco_classes.txt')
|
8 |
|
9 |
|
10 |
-
from ultralytics import YOLO
|
11 |
|
12 |
# Load a model
|
13 |
-
model = YOLO("best.pt") # load a custom model
|
14 |
|
15 |
# Predict with the model
|
16 |
# results = model("image.jpg", save = True) # predict on an image
|
17 |
|
|
|
18 |
|
19 |
-
def
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
#print(np.shape(img))
|
22 |
results = model.predict(img) # predict on an image
|
23 |
try:
|
@@ -31,9 +46,11 @@ def gradio_wrapper(img):
|
|
31 |
return cv2.putText(img, text,(00, 185), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
32 |
(0, 0, 255), 2, cv2.LINE_AA, False)
|
33 |
# return results
|
|
|
|
|
34 |
|
35 |
demo = gr.Interface(
|
36 |
-
|
37 |
#gr.Image(source="webcam", streaming=True, flip=True),
|
38 |
gr.Image(source="webcam", streaming=True),
|
39 |
"image",
|
|
|
7 |
# model = Yolov4(weight_path="best.pt", class_name_path='coco_classes.txt')
|
8 |
|
9 |
|
10 |
+
# from ultralytics import YOLO
|
11 |
|
12 |
# Load a model
|
13 |
+
# model = YOLO("best.pt") # load a custom model
|
14 |
|
15 |
# Predict with the model
|
16 |
# results = model("image.jpg", save = True) # predict on an image
|
17 |
|
18 |
+
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
19 |
|
20 |
+
def detect_faces(frame):
|
21 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
22 |
+
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
23 |
+
print(f"Detected {len(faces)} faces")
|
24 |
+
return len(faces)
|
25 |
+
|
26 |
+
def detect_faces_in_video():
|
27 |
+
success, frame = camera.read()
|
28 |
+
if success:
|
29 |
+
num_faces = detect_faces(frame)
|
30 |
+
return int(num_faces)
|
31 |
+
else:
|
32 |
+
return None
|
33 |
+
|
34 |
+
"""def gradio_wrapper(img):
|
35 |
+
global face_cascade
|
36 |
#print(np.shape(img))
|
37 |
results = model.predict(img) # predict on an image
|
38 |
try:
|
|
|
46 |
return cv2.putText(img, text,(00, 185), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
47 |
(0, 0, 255), 2, cv2.LINE_AA, False)
|
48 |
# return results
|
49 |
+
|
50 |
+
"""
|
51 |
|
52 |
demo = gr.Interface(
|
53 |
+
detect_faces_in_video,
|
54 |
#gr.Image(source="webcam", streaming=True, flip=True),
|
55 |
gr.Image(source="webcam", streaming=True),
|
56 |
"image",
|