root
initial commit
a344f64
import functools
import io
import json
import math
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # disable the tokenizer parallelism warning
import random
import re
import string
import subprocess
import sys
import yaml
import numpy as np
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass
from functools import partial
from pydub import AudioSegment
from tqdm import tqdm
import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer
import librosa
import soundfile as sf
EMOTION_MAP_DICT = {
'amused': 'amused' ,
'anger': 'angry' , 'angry': 'angry' ,
'anxious': 'anxious' ,
'apologetic': 'apologetic' ,
'assertive': 'assertive' ,
'calm': 'calm' ,
'concerned': 'concerned' ,
'contempt': 'contempt' ,
'disgust': 'disgusted' , 'disgusted': 'disgusted' ,
'encouraging': 'encouraging' ,
'excited': 'excited' ,
'fear': 'fearful' , 'fearful': 'fearful' ,
'frustated': 'frustated' ,
'happy': 'happy' , 'joy': 'happy' ,
'neutral': 'neutral' ,
'sad': 'sad' , 'sadness': 'sad' ,
'sleepy': 'sleepy' ,
'surprise': 'surprised' , 'surprised': 'surprised' ,
'pleasantly surprised': 'pleasantly surprised' ,
}
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
class DataCollator:
def __init__(self, tokenizer, clap_config):
self.tokenizer = tokenizer
self.clap_config = clap_config
self.max_num_window = clap_config["max_num_window"]
def __call__(self, batch):
filenames, audio_clips, audio_embed_masks, input_ids, attention_masks = zip(*batch)
num_windows_all = [sum(audio_embed_mask) for audio_embed_mask in audio_embed_masks]
max_window_batch = int(max(num_windows_all))
if max_window_batch > self.max_num_window:
max_window_batch = self.max_num_window
padded_audio_clips = []
padded_audio_embed_masks = []
for audio_clip, audio_embed_mask in zip(audio_clips,audio_embed_masks):
this_audio_clip_clips = [clip for clip in audio_clip]
num_windows = len(this_audio_clip_clips)
if num_windows < max_window_batch:
for _ in range(max_window_batch - num_windows):
this_audio_clip_clips.append(torch.zeros_like(this_audio_clip_clips[-1]))
audio_clip = torch.cat(this_audio_clip_clips)
audio_embed_mask = torch.zeros(max_window_batch)
audio_embed_mask[:num_windows] = 1
elif num_windows < max_window_batch:
audio_clip = this_audio_clip_clips[:max_window_batch]
audio_clip = torch.cat(this_audio_clip_clips)
audio_embed_mask = audio_embed_mask[:max_window_batch]
else:
audio_clip = torch.cat(this_audio_clip_clips)
padded_audio_clips.append(audio_clip)
padded_audio_embed_masks.append(audio_embed_mask)
audio_clips = torch.cat([x.unsqueeze(0) for x in padded_audio_clips], dim=0)
audio_embed_mask = torch.cat([x.unsqueeze(0) for x in padded_audio_embed_masks], dim=0)
max_length = max([ids.shape[1] for ids in input_ids])
padded_input_ids = []
padded_attention_masks = []
for ids, mask in zip(input_ids, attention_masks):
if ids.shape[1] < max_length:
padded_input_ids.append(
torch.cat([ids, torch.LongTensor([self.tokenizer.pad_token_id] * (max_length - ids.shape[1])).unsqueeze(0)], dim=1)
)
padded_attention_masks.append(
torch.cat([mask, torch.LongTensor([0] * (max_length - mask.shape[1])).unsqueeze(0)], dim=1)
)
else:
padded_input_ids.append(ids)
padded_attention_masks.append(mask)
padded_input_ids = torch.cat(padded_input_ids, dim=0)
padded_attention_masks = torch.cat(padded_attention_masks, dim=0).bool()
out_dict = dict(
filenames=filenames,
audio_clips=audio_clips,
audio_embed_mask=audio_embed_mask,
input_ids=padded_input_ids,
attention_mask=padded_attention_masks
)
return out_dict
class AudioTextData(torch.utils.data.Dataset):
def __init__(
self,
dataset_file_root: str,
data_root: str,
clap_config: dict,
dataset_blending_global_weight: float,
dataset_blending_config: dict,
dataset_blending_output: str,
tokenizer,
max_tokens: int,
split: str = 'train',
valid_dataset_config: dict = {},
valid_dataset_name: str = '',
epoch: int = 0,
force_reblend: bool = False,
sr = 16000,
**kwargs
):
self.dataset_file_root = dataset_file_root
self.data_root = data_root
self.clap_config = clap_config
self.dataset_blending_global_weight = dataset_blending_global_weight
self.dataset_blending_config = dataset_blending_config
self.sr = sr
self.split = split
self.epoch = epoch
self.force_reblend = force_reblend
assert self.split in ['train', 'val', 'test']
if self.split == 'train':
self.data = self.blend_dataset(dataset_blending_config, dataset_blending_output)
elif self.split in ['val', 'test']:
self.valid_data = self.validation_dataset(valid_dataset_config, valid_dataset_name)
self.tokenizer = tokenizer
self.tokenizer.padding_side = "right"
self.max_tokens = max_tokens
@staticmethod
def shuffle_dict_fixed_rand(dic, seed=0):
print('randomly shuffling key-value pairs')
local_random = np.random.default_rng(seed)
original_keys = list(dic.keys())
shuffled_keys = deepcopy(original_keys)
local_random.shuffle(shuffled_keys)
shuffling_mapping = {x: y for (x, y) in zip(original_keys, shuffled_keys)}
shuffled_dic = {}
for idx in original_keys:
shuffled_idx = shuffling_mapping[idx]
shuffled_dic[idx] = dic[shuffled_idx]
return shuffled_dic
@staticmethod
def is_broken_file(audiopath):
BROKEN_FILES = [
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/023/023431.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/033/033690.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119217.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119222.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119219.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/GTZAN/gtzan/data/genres/jazz/jazz.00054.wav"
]
return audiopath in BROKEN_FILES
def _read_dataset_file(self, dataset_file):
print("reading", dataset_file)
with open(dataset_file) as f:
contents = f.read()
contents = json.loads(contents)
if contents['split_path'] is not None:
abs_path = contents['split_path']
"""
for normal data
contents['data'] = {idx: {
'name': rel_path/name,
'prompt': prompt,
'output': output,
[optional] 'audio_start': audio_start,
'task': task,
}}
"""
if 'interleaved' not in dataset_file:
for idx in contents["data"]:
contents["data"][idx]['task'] = contents["flamingo_task"]
contents["data"][idx]['name'] = os.path.join(
abs_path, contents["data"][idx]['name']
)
return contents
def blend_dataset(self, dataset_blending_config, dataset_blending_output):
if os.path.exists(dataset_blending_output) and not self.force_reblend:
print("loading blended dataset file from:", dataset_blending_output)
with open(dataset_blending_output) as f:
contents = f.read()
self_data = json.loads(contents)
else:
if not self.force_reblend:
print("no blended dataset file found; reading all dataset files")
else:
print("force reblending dataset at epoch {}; reading all dataset files".format(self.epoch))
all_data = {}
for dataset_name in dataset_blending_config:
dataset_file = os.path.join(self.dataset_file_root, '{}.json'.format(dataset_name))
contents = self._read_dataset_file(dataset_file)
contents['data'] = self.shuffle_dict_fixed_rand(
contents['data'],
seed=sum(list(map(ord, dataset_name)))
)
weight_global = float(self.dataset_blending_global_weight)
weight_dataset = float(dataset_blending_config[dataset_name]["weight"])
weight = weight_global * weight_dataset
all_data[dataset_name] = {
"contents": contents,
"weight": weight
}
self_data = {
"dataset_path": self.data_root,
"split_path": None,
"total_num": 0,
"data": {} # {id: {'name': rel_path/name or [rel_path/names], 'prompt': prompt or [prompts], 'output': output or [outputs], 'task': task, 'interleaved': interleave_method}}
}
for dataset_name in all_data:
print('blending {}'.format(dataset_name))
contents = all_data[dataset_name]["contents"]
shuffled_contents_data = contents['data']
weight = all_data[dataset_name]["weight"]
assert type(weight) == float and weight > 0.0
dataset_total_num = contents['total_num']
start_idx = int(self.epoch * dataset_total_num * weight)
end_idx = int((self.epoch + 1) * dataset_total_num * weight)
for idx in range(start_idx, end_idx):
if idx > 0 and idx % dataset_total_num == 0:
print('force shuffling at new epoch {} for dataset {}'.format(idx // dataset_total_num, dataset_name))
shuffled_contents_data = self.shuffle_dict_fixed_rand(
contents['data'],
seed=sum(list(map(ord, '{}-epoch-{}'.format(dataset_name, idx // dataset_total_num))))
)
key = str(idx % dataset_total_num)
item = shuffled_contents_data[key]
found_broken = False
if type(item['name']) is str:
audiopath = item['name']
if self.is_broken_file(audiopath):
print('cannot read {}'.format(audiopath))
found_broken = True
if found_broken:
continue
self_data['data'][self_data['total_num']] = item
self_data['total_num'] += 1
if not self.force_reblend:
print('writing blended dataset file to:', dataset_blending_output)
with open(dataset_blending_output, 'w') as json_file:
json.dump(self_data, json_file)
else:
print('writing reblended dataset file to:', dataset_blending_output.replace('.json', '-reblended.json'))
with open(dataset_blending_output.replace('.json', '-reblended.json'), 'w') as json_file:
json.dump(self_data, json_file)
return self_data
def get_num_windows(self, T, sr):
clap_config = self.clap_config
window_length = int(float(clap_config["window_length"]) * sr)
window_overlap = int(float(clap_config["window_overlap"]) * sr)
max_num_window = int(clap_config["max_num_window"])
num_windows = 1
if T <= window_length:
num_windows = 1
full_length = window_length
elif T >= (max_num_window * window_length - (max_num_window - 1) * window_overlap):
num_windows = max_num_window
full_length = (max_num_window * window_length - (max_num_window - 1) * window_overlap)
else:
num_windows = 1 + int(np.ceil((T - window_length) / float(window_length - window_overlap)))
full_length = num_windows * window_length - (num_windows - 1) * window_overlap
return num_windows, full_length
def load_audio(self, file_path, target_sr=16000, duration=30.0, start=0.0):
if file_path.endswith('.mp3'):
audio = AudioSegment.from_file(file_path)
if len(audio) > (start + duration) * 1000:
audio = audio[start * 1000:(start + duration) * 1000]
if audio.frame_rate != target_sr:
audio = audio.set_frame_rate(target_sr)
if audio.channels > 1:
audio = audio.set_channels(1)
data = np.array(audio.get_array_of_samples())
if audio.sample_width == 2:
data = data.astype(np.float32) / np.iinfo(np.int16).max
elif audio.sample_width == 4:
data = data.astype(np.float32) / np.iinfo(np.int32).max
else:
raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))
else:
with sf.SoundFile(file_path) as audio:
original_sr = audio.samplerate
channels = audio.channels
max_frames = int((start + duration) * original_sr)
audio.seek(int(start * original_sr))
frames_to_read = min(max_frames, len(audio))
data = audio.read(frames_to_read)
if data.max() > 1 or data.min() < -1:
data = data / max(abs(data.max()), abs(data.min()))
if original_sr != target_sr:
if channels == 1:
data = librosa.resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
else:
data = librosa.resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
else:
if channels != 1:
data = data.T[0]
if data.min() >= 0:
data = 2 * data / abs(data.max()) - 1.0
else:
data = data / max(abs(data.max()), abs(data.min()))
assert len(data.shape) == 1, data.shape
return data
def compute_sliding_window(self, audio_file, audio_start=0.0, audio="sound"):
if type(audio_start) == str:
audio_start = float(audio_start)
if audio == "sound":
encoder_config = self.clap_config
else:
raise NotImplementedError
if encoder_config["method"] == 'nvclap-large':
sr = 16000
else:
raise NotImplementedError
window_length = int(float(encoder_config["window_length"]) * sr)
window_overlap = int(float(encoder_config["window_overlap"]) * sr)
max_num_window = int(encoder_config["max_num_window"])
duration = max_num_window * (encoder_config["window_length"] - encoder_config["window_overlap"]) + encoder_config["window_overlap"]
audio_data = self.load_audio(os.path.join(self.data_root, audio_file), sr, duration, audio_start) # already cuts to max duration
T = len(audio_data)
num_windows, full_length = self.get_num_windows(T, sr)
# pads to the nearest multiple of window_length
if full_length > T:
audio_data = np.append(audio_data, np.zeros(full_length - T))
audio_data = audio_data.reshape(1, -1)
audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float()
audio_clips = []
audio_embed_mask = torch.ones(num_windows)
for i in range(num_windows):
start = i * (window_length - window_overlap)
audio_data_tensor_this = audio_data_tensor[:, start:start+window_length]
audio_clips.append(audio_data_tensor_this)
return audio_clips, audio_embed_mask
def validation_dataset(self, valid_dataset_config, valid_dataset_name):
dataset_file = os.path.join(self.dataset_file_root, '{}.json'.format(valid_dataset_name))
contents = self._read_dataset_file(dataset_file)
contents['data'] = self.shuffle_dict_fixed_rand(
contents['data'],
seed=sum(list(map(ord, valid_dataset_name)))
)
return contents
def preprocess_string_for_eval(self, x):
x = x.rstrip().lstrip()
x = x.lower()
return x
def _actual_getitem(self, i):
if self.split == 'train':
try:
item = self.data['data'][str(i)]
except:
item = self.data['data'][i]
if type(item['name']) is str:
audio_file = item['name']
audio_start = 0 if 'audio_start' not in item else float(item['audio_start'])
else:
raise Exception(f"The item has a {type(item['name'])}. Only single path as a string is supported")
# compute window for long audios
audio_clips, audio_embed_mask = self.compute_sliding_window(audio_file, audio_start, audio="sound")
# make the text prompt
text_prompt = str(item['prompt']).lower()
text_output = str(item['output']).lower()
sample = f"<audio>{text_prompt.strip()}{self.tokenizer.sep_token}{text_output.strip()}<|endofchunk|>{self.tokenizer.eos_token}"
text = self.tokenizer(
sample,
max_length=self.max_tokens,
padding="longest",
truncation="only_first",
return_tensors="pt"
)
elif self.split in ['val', 'test']:
try:
item = self.valid_data['data'][str(i)]
except:
item = self.valid_data['data'][i]
if type(item['name']) is str:
audio_file = os.path.join(self.data_root, item['name'])
audio_start = 0 if 'audio_start' not in item else float(item['audio_start'])
else:
raise Exception(f"The item has a {type(item['name'])}. Only single path as a string is supported")
# compute window for long audios
audio_clips, audio_embed_mask = self.compute_sliding_window(audio_file, audio_start, audio="sound")
# make the text prompt
text_prompt = self.preprocess_string_for_eval(str(item['prompt']).lower())
text_output = self.preprocess_string_for_eval(str(item['output']).lower())
sample = f"<audio>{text_prompt.strip()}{self.tokenizer.sep_token}{text_output.strip()}<|endofchunk|>{self.tokenizer.eos_token}"
text = self.tokenizer(
sample,
max_length=self.max_tokens,
padding="longest",
truncation="only_first",
return_tensors="pt"
)
# audio_clips_clap, audio_embed_mask_clap, audio_clips_speech, audio_embed_mask_speech, audio_clips_music, audio_embed_mask_music,
return (item['name'], audio_clips, audio_embed_mask, text["input_ids"], text["attention_mask"])
def __getitem__(self, i):
try:
return self._actual_getitem(i)
except Exception as e:
print('batch {} failed with reason {}'.format(i, e))
try:
return self._actual_getitem((i-42)%99)
except:
return self._actual_getitem((i-84)%99)
def __len__(self):
if self.split == 'train':
return len(list(self.data['data'].keys()))
elif self.split == 'val':
return min(len(list(self.valid_data['data'].keys())), 64)
elif self.split == 'test':
return len(list(self.valid_data['data'].keys()))
@dataclass
class DataInfo:
dataset: Dataset
dataloader: DataLoader
sampler: DistributedSampler = None
def set_epoch(self, epoch):
if self.sampler is not None and isinstance(self.sampler, DistributedSampler):
self.sampler.set_epoch(epoch)
def get_audiotext_dataloader(data_config, clap_config, text_tokenizer, batch_size, split='train', epoch=0, force_reblend=False):
assert split in ['train', 'val', 'test']
data_collator = DataCollator(text_tokenizer, clap_config)
dataloader_shuffle = False
if split == 'train':
trainset = AudioTextData(
**data_config,
clap_config=clap_config,
tokenizer=text_tokenizer,
split=split,
epoch=epoch,
force_reblend=force_reblend
)
sampler = DistributedSampler(trainset, shuffle=True)
trainloader = DataLoader(
trainset,
sampler=sampler,
batch_size=batch_size,
shuffle=dataloader_shuffle,
collate_fn=data_collator,
num_workers=data_config["num_workers"]
)
return DataInfo(dataset=trainset, dataloader=trainloader, sampler=sampler)
elif split in ['val', 'test']:
all_DataInfo = {}
for valid_dataset_name in list(data_config["valid_dataset_config"].keys()):
valid_dataset_name = valid_dataset_name.strip()
validset = AudioTextData(
**data_config,
clap_config=clap_config,
tokenizer=text_tokenizer,
split=split,
valid_dataset_name=valid_dataset_name
)
if split == 'val':
# distributed sampler
all_DataInfo[valid_dataset_name] = DataInfo(
dataset=validset,
dataloader=DataLoader(
validset,
sampler=DistributedSampler(validset, shuffle=False),
batch_size=batch_size,
shuffle=dataloader_shuffle,
collate_fn=data_collator,
num_workers=data_config["num_workers"]
))
else:
# single GPU
all_DataInfo[valid_dataset_name] = DataInfo(
dataset=validset,
dataloader=DataLoader(
validset,
batch_size=batch_size,
shuffle=dataloader_shuffle,
collate_fn=data_collator,
num_workers=data_config["num_workers"]
))
return all_DataInfo
def main():
import time
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='../configs/config.yaml', help='yaml config path')
args = parser.parse_args()
config = yaml.load(open(args.config), Loader=yaml.FullLoader)
data_config = config['data_config']
clap_config = config['clap_config']
whisper_config = config["whisper_config"]
mert_config = config["mert_config"]
tokenizer_path = "facebook/opt-1.3b"
cache_dir = '/lustre/fsw/portfolios/adlr/users/sreyang/.cache'
text_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path,
local_files_only=False,
trust_remote_code=True,
cache_dir=cache_dir,
)
text_tokenizer.add_special_tokens(
{"additional_special_tokens": ["<audio>", "<|endofchunk|>"]}
)
if text_tokenizer.pad_token is None:
text_tokenizer.add_special_tokens({"pad_token": "<|PAD_TOKEN|>"})
if text_tokenizer.sep_token is None:
text_tokenizer.add_special_tokens({"sep_token": "<SEP>"})
trainset = AudioTextData(
**data_config,
clap_config=clap_config, tokenizer=text_tokenizer,
epoch=66, force_reblend=True
)
data_collator = DataCollator(text_tokenizer)
dataloader = DataLoader(trainset, batch_size=16, shuffle=True, collate_fn=data_collator, num_workers=4)
for step, batch in enumerate(dataloader):
filenames = batch["filenames"]
audio_clips = batch["audio_clips"]
audio_embed_mask = batch["audio_embed_mask"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
print(
'batch {}:'.format(step+1),
audio_clips.shape, audio_embed_mask.shape,
input_ids.shape, attention_mask.shape
)
print('filenames', filenames)
print('audio_embed_mask', audio_embed_mask)
print('input_ids', input_ids)
for input_id in input_ids:
print('-' * 50)
print(text_tokenizer.decode(input_id))
print('attention_mask', attention_mask)
if step == 20:
break
if __name__ == "__main__":
main()