File size: 25,962 Bytes
a344f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import functools
import io
import json
import math
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"  # disable the tokenizer parallelism warning
import random
import re
import string
import subprocess
import sys
import yaml

import numpy as np

from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass
from functools import partial
from pydub import AudioSegment
from tqdm import tqdm

import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler


from transformers import AutoTokenizer

import librosa
import soundfile as sf

EMOTION_MAP_DICT = {
    'amused':       'amused'      , 
    'anger':        'angry'       , 'angry':        'angry'       , 
    'anxious':      'anxious'     , 
    'apologetic':   'apologetic'  , 
    'assertive':    'assertive'   ,
    'calm':         'calm'        , 
    'concerned':    'concerned'   , 
    'contempt':     'contempt'    , 
    'disgust':      'disgusted'   , 'disgusted':    'disgusted'   , 
    'encouraging':  'encouraging' , 
    'excited':      'excited'     , 
    'fear':         'fearful'     , 'fearful':      'fearful'     , 
    'frustated':    'frustated'   ,
    'happy':        'happy'       , 'joy':          'happy'       , 
    'neutral':      'neutral'     , 
    'sad':          'sad'         , 'sadness':      'sad'         , 
    'sleepy':       'sleepy'      , 
    'surprise':     'surprised'   , 'surprised':    'surprised'   ,
    'pleasantly surprised': 'pleasantly surprised' ,
}


def int16_to_float32(x):
    return (x / 32767.0).astype(np.float32)


def float32_to_int16(x):
    x = np.clip(x, a_min=-1., a_max=1.)
    return (x * 32767.).astype(np.int16)


class DataCollator:
    def __init__(self, tokenizer, clap_config):

        self.tokenizer = tokenizer
        self.clap_config = clap_config
        self.max_num_window = clap_config["max_num_window"]

    def __call__(self, batch):

        filenames, audio_clips, audio_embed_masks, input_ids, attention_masks = zip(*batch)

        num_windows_all = [sum(audio_embed_mask) for audio_embed_mask in audio_embed_masks]
        max_window_batch = int(max(num_windows_all))

        if max_window_batch > self.max_num_window:
            max_window_batch = self.max_num_window

        padded_audio_clips = []
        padded_audio_embed_masks = []
        for audio_clip, audio_embed_mask in zip(audio_clips,audio_embed_masks):
            this_audio_clip_clips = [clip for clip in audio_clip]
            num_windows = len(this_audio_clip_clips)
            if num_windows < max_window_batch:
                for _ in range(max_window_batch - num_windows):
                    this_audio_clip_clips.append(torch.zeros_like(this_audio_clip_clips[-1]))
                audio_clip = torch.cat(this_audio_clip_clips)
                audio_embed_mask = torch.zeros(max_window_batch)
                audio_embed_mask[:num_windows] = 1
            elif num_windows < max_window_batch:
                audio_clip = this_audio_clip_clips[:max_window_batch]
                audio_clip = torch.cat(this_audio_clip_clips)
                audio_embed_mask = audio_embed_mask[:max_window_batch]
            else:
                audio_clip = torch.cat(this_audio_clip_clips)
                
            padded_audio_clips.append(audio_clip)
            padded_audio_embed_masks.append(audio_embed_mask)

        audio_clips = torch.cat([x.unsqueeze(0) for x in padded_audio_clips], dim=0)
        audio_embed_mask = torch.cat([x.unsqueeze(0) for x in padded_audio_embed_masks], dim=0)

        max_length = max([ids.shape[1] for ids in input_ids])

        padded_input_ids = []
        padded_attention_masks = []
        for ids, mask in zip(input_ids, attention_masks):
            if ids.shape[1] < max_length:
                padded_input_ids.append(
                    torch.cat([ids, torch.LongTensor([self.tokenizer.pad_token_id] * (max_length - ids.shape[1])).unsqueeze(0)], dim=1)
                )
                padded_attention_masks.append(
                    torch.cat([mask, torch.LongTensor([0] * (max_length - mask.shape[1])).unsqueeze(0)], dim=1)
                )
            else:
                padded_input_ids.append(ids)
                padded_attention_masks.append(mask)
        
        padded_input_ids = torch.cat(padded_input_ids, dim=0)
        padded_attention_masks = torch.cat(padded_attention_masks, dim=0).bool()
        
        out_dict = dict(
            filenames=filenames,
            audio_clips=audio_clips,
            audio_embed_mask=audio_embed_mask,
            input_ids=padded_input_ids,
            attention_mask=padded_attention_masks
        )
        return out_dict


class AudioTextData(torch.utils.data.Dataset):
    def __init__(
        self,
        dataset_file_root: str,
        data_root: str,
        clap_config: dict,
        dataset_blending_global_weight: float,
        dataset_blending_config: dict,
        dataset_blending_output: str,
        tokenizer,
        max_tokens: int,
        split: str = 'train',
        valid_dataset_config: dict = {},
        valid_dataset_name: str = '',
        epoch: int = 0,
        force_reblend: bool = False,
        sr = 16000,
        **kwargs
    ):
        self.dataset_file_root = dataset_file_root
        self.data_root = data_root
        self.clap_config = clap_config
        self.dataset_blending_global_weight = dataset_blending_global_weight
        self.dataset_blending_config = dataset_blending_config
        self.sr = sr
        
        self.split = split
        self.epoch = epoch
        self.force_reblend = force_reblend

        assert self.split in ['train', 'val', 'test']

        if self.split == 'train':
            self.data = self.blend_dataset(dataset_blending_config, dataset_blending_output)

        elif self.split in ['val', 'test']:
            self.valid_data = self.validation_dataset(valid_dataset_config, valid_dataset_name)
        
        self.tokenizer = tokenizer
        self.tokenizer.padding_side = "right"
        self.max_tokens = max_tokens

    @staticmethod
    def shuffle_dict_fixed_rand(dic, seed=0):
        print('randomly shuffling key-value pairs')
        
        local_random = np.random.default_rng(seed)
        original_keys = list(dic.keys())
        shuffled_keys = deepcopy(original_keys)
        local_random.shuffle(shuffled_keys)
        shuffling_mapping = {x: y for (x, y) in zip(original_keys, shuffled_keys)}

        shuffled_dic = {}
        for idx in original_keys:
            shuffled_idx = shuffling_mapping[idx]
            shuffled_dic[idx] = dic[shuffled_idx]
        return shuffled_dic

    @staticmethod
    def is_broken_file(audiopath):
        BROKEN_FILES = [
            "/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/023/023431.mp3",
            "/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/033/033690.mp3",
            "/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119217.mp3",
            "/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119222.mp3",
            "/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119219.mp3",
            "/lustre/fsw/portfolios/adlr/users/zkong/datasets/GTZAN/gtzan/data/genres/jazz/jazz.00054.wav"
        ]
        return audiopath in BROKEN_FILES

    def _read_dataset_file(self, dataset_file):
        print("reading", dataset_file)
        with open(dataset_file) as f:
            contents = f.read()
        contents = json.loads(contents)

        if contents['split_path'] is not None:
            abs_path = contents['split_path']

        """
        for normal data
        contents['data'] = {idx: {
                'name': rel_path/name, 
                'prompt': prompt, 
                'output': output, 
                [optional] 'audio_start': audio_start,
                'task': task,
            }}
        """

        if 'interleaved' not in dataset_file:
            for idx in contents["data"]:
                contents["data"][idx]['task'] = contents["flamingo_task"]
                contents["data"][idx]['name'] = os.path.join(
                    abs_path, contents["data"][idx]['name']
                )
            return contents
    
    def blend_dataset(self, dataset_blending_config, dataset_blending_output):
        if os.path.exists(dataset_blending_output) and not self.force_reblend:
            print("loading blended dataset file from:", dataset_blending_output)
            with open(dataset_blending_output) as f:
                contents = f.read()
            self_data = json.loads(contents)
        
        else:
            if not self.force_reblend:
                print("no blended dataset file found; reading all dataset files")
            else:
                print("force reblending dataset at epoch {}; reading all dataset files".format(self.epoch))

            all_data = {}
            for dataset_name in dataset_blending_config:
                dataset_file = os.path.join(self.dataset_file_root, '{}.json'.format(dataset_name))
                contents = self._read_dataset_file(dataset_file)
                contents['data'] = self.shuffle_dict_fixed_rand(
                    contents['data'], 
                    seed=sum(list(map(ord, dataset_name)))
                )

                weight_global = float(self.dataset_blending_global_weight)
                weight_dataset = float(dataset_blending_config[dataset_name]["weight"])
                weight = weight_global * weight_dataset

                all_data[dataset_name] = {
                    "contents": contents,
                    "weight": weight
                }

            self_data = {
                "dataset_path": self.data_root,
                "split_path": None,
                "total_num": 0,
                "data": {}  # {id: {'name': rel_path/name or [rel_path/names], 'prompt': prompt or [prompts], 'output': output or [outputs], 'task': task, 'interleaved': interleave_method}}
            }

            for dataset_name in all_data:
                print('blending {}'.format(dataset_name))

                contents = all_data[dataset_name]["contents"]
                shuffled_contents_data = contents['data']
                weight = all_data[dataset_name]["weight"]
                assert type(weight) == float and weight > 0.0

                dataset_total_num = contents['total_num']
                start_idx = int(self.epoch * dataset_total_num * weight)
                end_idx = int((self.epoch + 1) * dataset_total_num * weight)

                for idx in range(start_idx, end_idx):
                    if idx > 0 and idx % dataset_total_num == 0:
                        print('force shuffling at new epoch {} for dataset {}'.format(idx // dataset_total_num, dataset_name))
                        shuffled_contents_data = self.shuffle_dict_fixed_rand(
                            contents['data'], 
                            seed=sum(list(map(ord, '{}-epoch-{}'.format(dataset_name, idx // dataset_total_num))))
                        )

                    key = str(idx % dataset_total_num)
                    item = shuffled_contents_data[key]

                    found_broken = False
                    if type(item['name']) is str:
                        audiopath = item['name']
                        if self.is_broken_file(audiopath):
                            print('cannot read {}'.format(audiopath))
                            found_broken = True

                    if found_broken:
                        continue 
                    
                    self_data['data'][self_data['total_num']] = item
                    self_data['total_num'] += 1 

            if not self.force_reblend:
                print('writing blended dataset file to:', dataset_blending_output)
                with open(dataset_blending_output, 'w') as json_file:
                    json.dump(self_data, json_file)
            else:
                print('writing reblended dataset file to:', dataset_blending_output.replace('.json', '-reblended.json'))
                with open(dataset_blending_output.replace('.json', '-reblended.json'), 'w') as json_file:
                    json.dump(self_data, json_file)

        return self_data

    def get_num_windows(self, T, sr):
        clap_config = self.clap_config
        window_length  = int(float(clap_config["window_length"]) * sr)
        window_overlap = int(float(clap_config["window_overlap"]) * sr)
        max_num_window = int(clap_config["max_num_window"])

        num_windows = 1
        if T <= window_length:
            num_windows = 1
            full_length = window_length
        elif T >= (max_num_window * window_length - (max_num_window - 1) * window_overlap):
            num_windows = max_num_window
            full_length = (max_num_window * window_length - (max_num_window - 1) * window_overlap)
        else:
            num_windows = 1 + int(np.ceil((T - window_length) / float(window_length - window_overlap)))
            full_length = num_windows * window_length - (num_windows - 1) * window_overlap
        
        return num_windows, full_length

    def load_audio(self, file_path, target_sr=16000, duration=30.0, start=0.0):
        if file_path.endswith('.mp3'):
            audio = AudioSegment.from_file(file_path)
            if len(audio) > (start + duration) * 1000:
                audio = audio[start * 1000:(start + duration) * 1000]

            if audio.frame_rate != target_sr:
                audio = audio.set_frame_rate(target_sr)

            if audio.channels > 1:
                audio = audio.set_channels(1)
            
            data = np.array(audio.get_array_of_samples())
            if audio.sample_width == 2:
                data = data.astype(np.float32) / np.iinfo(np.int16).max
            elif audio.sample_width == 4:
                data = data.astype(np.float32) / np.iinfo(np.int32).max
            else:
                raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))

        else:
            with sf.SoundFile(file_path) as audio:
                original_sr = audio.samplerate
                channels = audio.channels

                max_frames = int((start + duration) * original_sr)

                audio.seek(int(start * original_sr))
                frames_to_read = min(max_frames, len(audio))
                data = audio.read(frames_to_read)

                if data.max() > 1 or data.min() < -1:
                    data = data / max(abs(data.max()), abs(data.min()))
            
            if original_sr != target_sr:
                if channels == 1:
                    data = librosa.resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
                else:
                    data = librosa.resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
            else:
                if channels != 1:
                    data = data.T[0]
        
        if data.min() >= 0:
            data = 2 * data / abs(data.max()) - 1.0
        else:
            data = data / max(abs(data.max()), abs(data.min()))
        
        assert len(data.shape) == 1, data.shape
        return data

    def compute_sliding_window(self, audio_file, audio_start=0.0, audio="sound"):
        if type(audio_start) == str:
            audio_start = float(audio_start)

        if audio == "sound":
            encoder_config = self.clap_config
        else:
            raise NotImplementedError

        if encoder_config["method"] == 'nvclap-large':
            sr = 16000
        else:
            raise NotImplementedError

        window_length  = int(float(encoder_config["window_length"]) * sr)
        window_overlap = int(float(encoder_config["window_overlap"]) * sr)
        max_num_window = int(encoder_config["max_num_window"])
        duration = max_num_window * (encoder_config["window_length"] - encoder_config["window_overlap"]) + encoder_config["window_overlap"]

        audio_data = self.load_audio(os.path.join(self.data_root, audio_file), sr, duration, audio_start) # already cuts to max duration
        T = len(audio_data)
        num_windows, full_length = self.get_num_windows(T, sr)

        # pads to the nearest multiple of window_length
        if full_length > T:
            audio_data = np.append(audio_data, np.zeros(full_length - T))

        audio_data = audio_data.reshape(1, -1)
        audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float()

        audio_clips = []
        audio_embed_mask = torch.ones(num_windows)
        for i in range(num_windows):
            start = i * (window_length - window_overlap)
            audio_data_tensor_this = audio_data_tensor[:, start:start+window_length]
            audio_clips.append(audio_data_tensor_this)            
        
        return audio_clips, audio_embed_mask

    def validation_dataset(self, valid_dataset_config, valid_dataset_name):
        dataset_file = os.path.join(self.dataset_file_root, '{}.json'.format(valid_dataset_name))
        contents = self._read_dataset_file(dataset_file)

        contents['data'] = self.shuffle_dict_fixed_rand(
            contents['data'], 
            seed=sum(list(map(ord, valid_dataset_name)))
        )

        return contents

    def preprocess_string_for_eval(self, x):
        x = x.rstrip().lstrip()
        x = x.lower()
        return x

    def _actual_getitem(self, i):
        if self.split == 'train':
            try:
                item = self.data['data'][str(i)]
            except:
                item = self.data['data'][i]

            if type(item['name']) is str:
                audio_file = item['name']
                audio_start = 0 if 'audio_start' not in item else float(item['audio_start'])
            else:
                raise Exception(f"The item has a {type(item['name'])}. Only single path as a string is supported")

            # compute window for long audios
            audio_clips, audio_embed_mask = self.compute_sliding_window(audio_file, audio_start, audio="sound")
        
            # make the text prompt
            text_prompt = str(item['prompt']).lower()
            text_output = str(item['output']).lower()

            sample = f"<audio>{text_prompt.strip()}{self.tokenizer.sep_token}{text_output.strip()}<|endofchunk|>{self.tokenizer.eos_token}"

            text = self.tokenizer(
                sample,
                max_length=self.max_tokens,
                padding="longest",
                truncation="only_first",
                return_tensors="pt"
            )
        
        elif self.split in ['val', 'test']:
            try:
                item = self.valid_data['data'][str(i)]
            except:
                item = self.valid_data['data'][i]

            if type(item['name']) is str:
                audio_file = os.path.join(self.data_root, item['name'])
                audio_start = 0 if 'audio_start' not in item else float(item['audio_start'])
            else:
                raise Exception(f"The item has a {type(item['name'])}. Only single path as a string is supported")

            # compute window for long audios
            audio_clips, audio_embed_mask = self.compute_sliding_window(audio_file, audio_start, audio="sound")
        
            # make the text prompt
            text_prompt = self.preprocess_string_for_eval(str(item['prompt']).lower())
            text_output = self.preprocess_string_for_eval(str(item['output']).lower())

            sample = f"<audio>{text_prompt.strip()}{self.tokenizer.sep_token}{text_output.strip()}<|endofchunk|>{self.tokenizer.eos_token}"

            text = self.tokenizer(
                sample,
                max_length=self.max_tokens,
                padding="longest",
                truncation="only_first",
                return_tensors="pt"
            )
            
        # audio_clips_clap, audio_embed_mask_clap, audio_clips_speech, audio_embed_mask_speech, audio_clips_music, audio_embed_mask_music,
        return (item['name'], audio_clips, audio_embed_mask, text["input_ids"], text["attention_mask"])

    def __getitem__(self, i):
        try: 
            return self._actual_getitem(i)
        except Exception as e:
            print('batch {} failed with reason {}'.format(i, e))
            try:
                return self._actual_getitem((i-42)%99)
            except:
                return self._actual_getitem((i-84)%99)

    def __len__(self):
        if self.split == 'train':
            return len(list(self.data['data'].keys()))

        elif self.split == 'val':
            return min(len(list(self.valid_data['data'].keys())), 64)

        elif self.split == 'test':
            return len(list(self.valid_data['data'].keys()))


@dataclass
class DataInfo:
    dataset: Dataset
    dataloader: DataLoader
    sampler: DistributedSampler = None

    def set_epoch(self, epoch):
        if self.sampler is not None and isinstance(self.sampler, DistributedSampler):
            self.sampler.set_epoch(epoch)


def get_audiotext_dataloader(data_config, clap_config, text_tokenizer, batch_size, split='train', epoch=0, force_reblend=False):
    assert split in ['train', 'val', 'test']

    data_collator = DataCollator(text_tokenizer, clap_config)
    dataloader_shuffle = False

    if split == 'train':
        trainset = AudioTextData(
            **data_config, 
            clap_config=clap_config,
            tokenizer=text_tokenizer, 
            split=split,
            epoch=epoch,
            force_reblend=force_reblend
        )
        sampler = DistributedSampler(trainset, shuffle=True)
        trainloader = DataLoader(
            trainset, 
            sampler=sampler, 
            batch_size=batch_size, 
            shuffle=dataloader_shuffle, 
            collate_fn=data_collator, 
            num_workers=data_config["num_workers"]
        )
        return DataInfo(dataset=trainset, dataloader=trainloader, sampler=sampler)
    
    elif split in ['val', 'test']:
        all_DataInfo = {}
        for valid_dataset_name in list(data_config["valid_dataset_config"].keys()):
            valid_dataset_name = valid_dataset_name.strip()
            validset = AudioTextData(
                **data_config, 
                clap_config=clap_config,
                tokenizer=text_tokenizer, 
                split=split, 
                valid_dataset_name=valid_dataset_name
            )
            if split == 'val':
                # distributed sampler
                all_DataInfo[valid_dataset_name] = DataInfo(
                    dataset=validset,
                    dataloader=DataLoader(
                        validset, 
                        sampler=DistributedSampler(validset, shuffle=False),
                        batch_size=batch_size, 
                        shuffle=dataloader_shuffle, 
                        collate_fn=data_collator, 
                        num_workers=data_config["num_workers"]
                ))
            else:
                # single GPU
                all_DataInfo[valid_dataset_name] = DataInfo(
                    dataset=validset,
                    dataloader=DataLoader(
                        validset, 
                        batch_size=batch_size, 
                        shuffle=dataloader_shuffle, 
                        collate_fn=data_collator, 
                        num_workers=data_config["num_workers"]
                ))

        return all_DataInfo
    

def main():
    import time
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--config', type=str, default='../configs/config.yaml', help='yaml config path')
    args = parser.parse_args()

    config = yaml.load(open(args.config), Loader=yaml.FullLoader)

    data_config = config['data_config']
    clap_config = config['clap_config']
    whisper_config = config["whisper_config"]
    mert_config = config["mert_config"]

    tokenizer_path = "facebook/opt-1.3b"
    cache_dir = '/lustre/fsw/portfolios/adlr/users/sreyang/.cache'
    text_tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_path,
        local_files_only=False,
        trust_remote_code=True,
        cache_dir=cache_dir,
    )
    text_tokenizer.add_special_tokens(
        {"additional_special_tokens": ["<audio>", "<|endofchunk|>"]}
    )
    if text_tokenizer.pad_token is None:
        text_tokenizer.add_special_tokens({"pad_token": "<|PAD_TOKEN|>"})
    if text_tokenizer.sep_token is None:
        text_tokenizer.add_special_tokens({"sep_token": "<SEP>"})

    trainset = AudioTextData(
        **data_config,
        clap_config=clap_config, tokenizer=text_tokenizer,
        epoch=66, force_reblend=True
    )

    data_collator = DataCollator(text_tokenizer)
    dataloader = DataLoader(trainset, batch_size=16, shuffle=True, collate_fn=data_collator, num_workers=4)

    for step, batch in enumerate(dataloader):
        filenames = batch["filenames"]
        audio_clips = batch["audio_clips"]
        audio_embed_mask = batch["audio_embed_mask"]
        input_ids = batch["input_ids"]
        attention_mask = batch["attention_mask"]

        print(
            'batch {}:'.format(step+1), 
            audio_clips.shape, audio_embed_mask.shape, 
            input_ids.shape, attention_mask.shape
        )

        print('filenames', filenames)
        print('audio_embed_mask', audio_embed_mask)
        print('input_ids', input_ids)
        for input_id in input_ids:
            print('-' * 50)
            print(text_tokenizer.decode(input_id))
        print('attention_mask', attention_mask)

        if step == 20:
            break


if __name__ == "__main__":
    main()