Spaces:
Sleeping
Sleeping
File size: 25,962 Bytes
a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
import functools
import io
import json
import math
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # disable the tokenizer parallelism warning
import random
import re
import string
import subprocess
import sys
import yaml
import numpy as np
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass
from functools import partial
from pydub import AudioSegment
from tqdm import tqdm
import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer
import librosa
import soundfile as sf
EMOTION_MAP_DICT = {
'amused': 'amused' ,
'anger': 'angry' , 'angry': 'angry' ,
'anxious': 'anxious' ,
'apologetic': 'apologetic' ,
'assertive': 'assertive' ,
'calm': 'calm' ,
'concerned': 'concerned' ,
'contempt': 'contempt' ,
'disgust': 'disgusted' , 'disgusted': 'disgusted' ,
'encouraging': 'encouraging' ,
'excited': 'excited' ,
'fear': 'fearful' , 'fearful': 'fearful' ,
'frustated': 'frustated' ,
'happy': 'happy' , 'joy': 'happy' ,
'neutral': 'neutral' ,
'sad': 'sad' , 'sadness': 'sad' ,
'sleepy': 'sleepy' ,
'surprise': 'surprised' , 'surprised': 'surprised' ,
'pleasantly surprised': 'pleasantly surprised' ,
}
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
class DataCollator:
def __init__(self, tokenizer, clap_config):
self.tokenizer = tokenizer
self.clap_config = clap_config
self.max_num_window = clap_config["max_num_window"]
def __call__(self, batch):
filenames, audio_clips, audio_embed_masks, input_ids, attention_masks = zip(*batch)
num_windows_all = [sum(audio_embed_mask) for audio_embed_mask in audio_embed_masks]
max_window_batch = int(max(num_windows_all))
if max_window_batch > self.max_num_window:
max_window_batch = self.max_num_window
padded_audio_clips = []
padded_audio_embed_masks = []
for audio_clip, audio_embed_mask in zip(audio_clips,audio_embed_masks):
this_audio_clip_clips = [clip for clip in audio_clip]
num_windows = len(this_audio_clip_clips)
if num_windows < max_window_batch:
for _ in range(max_window_batch - num_windows):
this_audio_clip_clips.append(torch.zeros_like(this_audio_clip_clips[-1]))
audio_clip = torch.cat(this_audio_clip_clips)
audio_embed_mask = torch.zeros(max_window_batch)
audio_embed_mask[:num_windows] = 1
elif num_windows < max_window_batch:
audio_clip = this_audio_clip_clips[:max_window_batch]
audio_clip = torch.cat(this_audio_clip_clips)
audio_embed_mask = audio_embed_mask[:max_window_batch]
else:
audio_clip = torch.cat(this_audio_clip_clips)
padded_audio_clips.append(audio_clip)
padded_audio_embed_masks.append(audio_embed_mask)
audio_clips = torch.cat([x.unsqueeze(0) for x in padded_audio_clips], dim=0)
audio_embed_mask = torch.cat([x.unsqueeze(0) for x in padded_audio_embed_masks], dim=0)
max_length = max([ids.shape[1] for ids in input_ids])
padded_input_ids = []
padded_attention_masks = []
for ids, mask in zip(input_ids, attention_masks):
if ids.shape[1] < max_length:
padded_input_ids.append(
torch.cat([ids, torch.LongTensor([self.tokenizer.pad_token_id] * (max_length - ids.shape[1])).unsqueeze(0)], dim=1)
)
padded_attention_masks.append(
torch.cat([mask, torch.LongTensor([0] * (max_length - mask.shape[1])).unsqueeze(0)], dim=1)
)
else:
padded_input_ids.append(ids)
padded_attention_masks.append(mask)
padded_input_ids = torch.cat(padded_input_ids, dim=0)
padded_attention_masks = torch.cat(padded_attention_masks, dim=0).bool()
out_dict = dict(
filenames=filenames,
audio_clips=audio_clips,
audio_embed_mask=audio_embed_mask,
input_ids=padded_input_ids,
attention_mask=padded_attention_masks
)
return out_dict
class AudioTextData(torch.utils.data.Dataset):
def __init__(
self,
dataset_file_root: str,
data_root: str,
clap_config: dict,
dataset_blending_global_weight: float,
dataset_blending_config: dict,
dataset_blending_output: str,
tokenizer,
max_tokens: int,
split: str = 'train',
valid_dataset_config: dict = {},
valid_dataset_name: str = '',
epoch: int = 0,
force_reblend: bool = False,
sr = 16000,
**kwargs
):
self.dataset_file_root = dataset_file_root
self.data_root = data_root
self.clap_config = clap_config
self.dataset_blending_global_weight = dataset_blending_global_weight
self.dataset_blending_config = dataset_blending_config
self.sr = sr
self.split = split
self.epoch = epoch
self.force_reblend = force_reblend
assert self.split in ['train', 'val', 'test']
if self.split == 'train':
self.data = self.blend_dataset(dataset_blending_config, dataset_blending_output)
elif self.split in ['val', 'test']:
self.valid_data = self.validation_dataset(valid_dataset_config, valid_dataset_name)
self.tokenizer = tokenizer
self.tokenizer.padding_side = "right"
self.max_tokens = max_tokens
@staticmethod
def shuffle_dict_fixed_rand(dic, seed=0):
print('randomly shuffling key-value pairs')
local_random = np.random.default_rng(seed)
original_keys = list(dic.keys())
shuffled_keys = deepcopy(original_keys)
local_random.shuffle(shuffled_keys)
shuffling_mapping = {x: y for (x, y) in zip(original_keys, shuffled_keys)}
shuffled_dic = {}
for idx in original_keys:
shuffled_idx = shuffling_mapping[idx]
shuffled_dic[idx] = dic[shuffled_idx]
return shuffled_dic
@staticmethod
def is_broken_file(audiopath):
BROKEN_FILES = [
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/023/023431.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/033/033690.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119217.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119222.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/FMA/fma_large/119/119219.mp3",
"/lustre/fsw/portfolios/adlr/users/zkong/datasets/GTZAN/gtzan/data/genres/jazz/jazz.00054.wav"
]
return audiopath in BROKEN_FILES
def _read_dataset_file(self, dataset_file):
print("reading", dataset_file)
with open(dataset_file) as f:
contents = f.read()
contents = json.loads(contents)
if contents['split_path'] is not None:
abs_path = contents['split_path']
"""
for normal data
contents['data'] = {idx: {
'name': rel_path/name,
'prompt': prompt,
'output': output,
[optional] 'audio_start': audio_start,
'task': task,
}}
"""
if 'interleaved' not in dataset_file:
for idx in contents["data"]:
contents["data"][idx]['task'] = contents["flamingo_task"]
contents["data"][idx]['name'] = os.path.join(
abs_path, contents["data"][idx]['name']
)
return contents
def blend_dataset(self, dataset_blending_config, dataset_blending_output):
if os.path.exists(dataset_blending_output) and not self.force_reblend:
print("loading blended dataset file from:", dataset_blending_output)
with open(dataset_blending_output) as f:
contents = f.read()
self_data = json.loads(contents)
else:
if not self.force_reblend:
print("no blended dataset file found; reading all dataset files")
else:
print("force reblending dataset at epoch {}; reading all dataset files".format(self.epoch))
all_data = {}
for dataset_name in dataset_blending_config:
dataset_file = os.path.join(self.dataset_file_root, '{}.json'.format(dataset_name))
contents = self._read_dataset_file(dataset_file)
contents['data'] = self.shuffle_dict_fixed_rand(
contents['data'],
seed=sum(list(map(ord, dataset_name)))
)
weight_global = float(self.dataset_blending_global_weight)
weight_dataset = float(dataset_blending_config[dataset_name]["weight"])
weight = weight_global * weight_dataset
all_data[dataset_name] = {
"contents": contents,
"weight": weight
}
self_data = {
"dataset_path": self.data_root,
"split_path": None,
"total_num": 0,
"data": {} # {id: {'name': rel_path/name or [rel_path/names], 'prompt': prompt or [prompts], 'output': output or [outputs], 'task': task, 'interleaved': interleave_method}}
}
for dataset_name in all_data:
print('blending {}'.format(dataset_name))
contents = all_data[dataset_name]["contents"]
shuffled_contents_data = contents['data']
weight = all_data[dataset_name]["weight"]
assert type(weight) == float and weight > 0.0
dataset_total_num = contents['total_num']
start_idx = int(self.epoch * dataset_total_num * weight)
end_idx = int((self.epoch + 1) * dataset_total_num * weight)
for idx in range(start_idx, end_idx):
if idx > 0 and idx % dataset_total_num == 0:
print('force shuffling at new epoch {} for dataset {}'.format(idx // dataset_total_num, dataset_name))
shuffled_contents_data = self.shuffle_dict_fixed_rand(
contents['data'],
seed=sum(list(map(ord, '{}-epoch-{}'.format(dataset_name, idx // dataset_total_num))))
)
key = str(idx % dataset_total_num)
item = shuffled_contents_data[key]
found_broken = False
if type(item['name']) is str:
audiopath = item['name']
if self.is_broken_file(audiopath):
print('cannot read {}'.format(audiopath))
found_broken = True
if found_broken:
continue
self_data['data'][self_data['total_num']] = item
self_data['total_num'] += 1
if not self.force_reblend:
print('writing blended dataset file to:', dataset_blending_output)
with open(dataset_blending_output, 'w') as json_file:
json.dump(self_data, json_file)
else:
print('writing reblended dataset file to:', dataset_blending_output.replace('.json', '-reblended.json'))
with open(dataset_blending_output.replace('.json', '-reblended.json'), 'w') as json_file:
json.dump(self_data, json_file)
return self_data
def get_num_windows(self, T, sr):
clap_config = self.clap_config
window_length = int(float(clap_config["window_length"]) * sr)
window_overlap = int(float(clap_config["window_overlap"]) * sr)
max_num_window = int(clap_config["max_num_window"])
num_windows = 1
if T <= window_length:
num_windows = 1
full_length = window_length
elif T >= (max_num_window * window_length - (max_num_window - 1) * window_overlap):
num_windows = max_num_window
full_length = (max_num_window * window_length - (max_num_window - 1) * window_overlap)
else:
num_windows = 1 + int(np.ceil((T - window_length) / float(window_length - window_overlap)))
full_length = num_windows * window_length - (num_windows - 1) * window_overlap
return num_windows, full_length
def load_audio(self, file_path, target_sr=16000, duration=30.0, start=0.0):
if file_path.endswith('.mp3'):
audio = AudioSegment.from_file(file_path)
if len(audio) > (start + duration) * 1000:
audio = audio[start * 1000:(start + duration) * 1000]
if audio.frame_rate != target_sr:
audio = audio.set_frame_rate(target_sr)
if audio.channels > 1:
audio = audio.set_channels(1)
data = np.array(audio.get_array_of_samples())
if audio.sample_width == 2:
data = data.astype(np.float32) / np.iinfo(np.int16).max
elif audio.sample_width == 4:
data = data.astype(np.float32) / np.iinfo(np.int32).max
else:
raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))
else:
with sf.SoundFile(file_path) as audio:
original_sr = audio.samplerate
channels = audio.channels
max_frames = int((start + duration) * original_sr)
audio.seek(int(start * original_sr))
frames_to_read = min(max_frames, len(audio))
data = audio.read(frames_to_read)
if data.max() > 1 or data.min() < -1:
data = data / max(abs(data.max()), abs(data.min()))
if original_sr != target_sr:
if channels == 1:
data = librosa.resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
else:
data = librosa.resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
else:
if channels != 1:
data = data.T[0]
if data.min() >= 0:
data = 2 * data / abs(data.max()) - 1.0
else:
data = data / max(abs(data.max()), abs(data.min()))
assert len(data.shape) == 1, data.shape
return data
def compute_sliding_window(self, audio_file, audio_start=0.0, audio="sound"):
if type(audio_start) == str:
audio_start = float(audio_start)
if audio == "sound":
encoder_config = self.clap_config
else:
raise NotImplementedError
if encoder_config["method"] == 'nvclap-large':
sr = 16000
else:
raise NotImplementedError
window_length = int(float(encoder_config["window_length"]) * sr)
window_overlap = int(float(encoder_config["window_overlap"]) * sr)
max_num_window = int(encoder_config["max_num_window"])
duration = max_num_window * (encoder_config["window_length"] - encoder_config["window_overlap"]) + encoder_config["window_overlap"]
audio_data = self.load_audio(os.path.join(self.data_root, audio_file), sr, duration, audio_start) # already cuts to max duration
T = len(audio_data)
num_windows, full_length = self.get_num_windows(T, sr)
# pads to the nearest multiple of window_length
if full_length > T:
audio_data = np.append(audio_data, np.zeros(full_length - T))
audio_data = audio_data.reshape(1, -1)
audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float()
audio_clips = []
audio_embed_mask = torch.ones(num_windows)
for i in range(num_windows):
start = i * (window_length - window_overlap)
audio_data_tensor_this = audio_data_tensor[:, start:start+window_length]
audio_clips.append(audio_data_tensor_this)
return audio_clips, audio_embed_mask
def validation_dataset(self, valid_dataset_config, valid_dataset_name):
dataset_file = os.path.join(self.dataset_file_root, '{}.json'.format(valid_dataset_name))
contents = self._read_dataset_file(dataset_file)
contents['data'] = self.shuffle_dict_fixed_rand(
contents['data'],
seed=sum(list(map(ord, valid_dataset_name)))
)
return contents
def preprocess_string_for_eval(self, x):
x = x.rstrip().lstrip()
x = x.lower()
return x
def _actual_getitem(self, i):
if self.split == 'train':
try:
item = self.data['data'][str(i)]
except:
item = self.data['data'][i]
if type(item['name']) is str:
audio_file = item['name']
audio_start = 0 if 'audio_start' not in item else float(item['audio_start'])
else:
raise Exception(f"The item has a {type(item['name'])}. Only single path as a string is supported")
# compute window for long audios
audio_clips, audio_embed_mask = self.compute_sliding_window(audio_file, audio_start, audio="sound")
# make the text prompt
text_prompt = str(item['prompt']).lower()
text_output = str(item['output']).lower()
sample = f"<audio>{text_prompt.strip()}{self.tokenizer.sep_token}{text_output.strip()}<|endofchunk|>{self.tokenizer.eos_token}"
text = self.tokenizer(
sample,
max_length=self.max_tokens,
padding="longest",
truncation="only_first",
return_tensors="pt"
)
elif self.split in ['val', 'test']:
try:
item = self.valid_data['data'][str(i)]
except:
item = self.valid_data['data'][i]
if type(item['name']) is str:
audio_file = os.path.join(self.data_root, item['name'])
audio_start = 0 if 'audio_start' not in item else float(item['audio_start'])
else:
raise Exception(f"The item has a {type(item['name'])}. Only single path as a string is supported")
# compute window for long audios
audio_clips, audio_embed_mask = self.compute_sliding_window(audio_file, audio_start, audio="sound")
# make the text prompt
text_prompt = self.preprocess_string_for_eval(str(item['prompt']).lower())
text_output = self.preprocess_string_for_eval(str(item['output']).lower())
sample = f"<audio>{text_prompt.strip()}{self.tokenizer.sep_token}{text_output.strip()}<|endofchunk|>{self.tokenizer.eos_token}"
text = self.tokenizer(
sample,
max_length=self.max_tokens,
padding="longest",
truncation="only_first",
return_tensors="pt"
)
# audio_clips_clap, audio_embed_mask_clap, audio_clips_speech, audio_embed_mask_speech, audio_clips_music, audio_embed_mask_music,
return (item['name'], audio_clips, audio_embed_mask, text["input_ids"], text["attention_mask"])
def __getitem__(self, i):
try:
return self._actual_getitem(i)
except Exception as e:
print('batch {} failed with reason {}'.format(i, e))
try:
return self._actual_getitem((i-42)%99)
except:
return self._actual_getitem((i-84)%99)
def __len__(self):
if self.split == 'train':
return len(list(self.data['data'].keys()))
elif self.split == 'val':
return min(len(list(self.valid_data['data'].keys())), 64)
elif self.split == 'test':
return len(list(self.valid_data['data'].keys()))
@dataclass
class DataInfo:
dataset: Dataset
dataloader: DataLoader
sampler: DistributedSampler = None
def set_epoch(self, epoch):
if self.sampler is not None and isinstance(self.sampler, DistributedSampler):
self.sampler.set_epoch(epoch)
def get_audiotext_dataloader(data_config, clap_config, text_tokenizer, batch_size, split='train', epoch=0, force_reblend=False):
assert split in ['train', 'val', 'test']
data_collator = DataCollator(text_tokenizer, clap_config)
dataloader_shuffle = False
if split == 'train':
trainset = AudioTextData(
**data_config,
clap_config=clap_config,
tokenizer=text_tokenizer,
split=split,
epoch=epoch,
force_reblend=force_reblend
)
sampler = DistributedSampler(trainset, shuffle=True)
trainloader = DataLoader(
trainset,
sampler=sampler,
batch_size=batch_size,
shuffle=dataloader_shuffle,
collate_fn=data_collator,
num_workers=data_config["num_workers"]
)
return DataInfo(dataset=trainset, dataloader=trainloader, sampler=sampler)
elif split in ['val', 'test']:
all_DataInfo = {}
for valid_dataset_name in list(data_config["valid_dataset_config"].keys()):
valid_dataset_name = valid_dataset_name.strip()
validset = AudioTextData(
**data_config,
clap_config=clap_config,
tokenizer=text_tokenizer,
split=split,
valid_dataset_name=valid_dataset_name
)
if split == 'val':
# distributed sampler
all_DataInfo[valid_dataset_name] = DataInfo(
dataset=validset,
dataloader=DataLoader(
validset,
sampler=DistributedSampler(validset, shuffle=False),
batch_size=batch_size,
shuffle=dataloader_shuffle,
collate_fn=data_collator,
num_workers=data_config["num_workers"]
))
else:
# single GPU
all_DataInfo[valid_dataset_name] = DataInfo(
dataset=validset,
dataloader=DataLoader(
validset,
batch_size=batch_size,
shuffle=dataloader_shuffle,
collate_fn=data_collator,
num_workers=data_config["num_workers"]
))
return all_DataInfo
def main():
import time
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='../configs/config.yaml', help='yaml config path')
args = parser.parse_args()
config = yaml.load(open(args.config), Loader=yaml.FullLoader)
data_config = config['data_config']
clap_config = config['clap_config']
whisper_config = config["whisper_config"]
mert_config = config["mert_config"]
tokenizer_path = "facebook/opt-1.3b"
cache_dir = '/lustre/fsw/portfolios/adlr/users/sreyang/.cache'
text_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path,
local_files_only=False,
trust_remote_code=True,
cache_dir=cache_dir,
)
text_tokenizer.add_special_tokens(
{"additional_special_tokens": ["<audio>", "<|endofchunk|>"]}
)
if text_tokenizer.pad_token is None:
text_tokenizer.add_special_tokens({"pad_token": "<|PAD_TOKEN|>"})
if text_tokenizer.sep_token is None:
text_tokenizer.add_special_tokens({"sep_token": "<SEP>"})
trainset = AudioTextData(
**data_config,
clap_config=clap_config, tokenizer=text_tokenizer,
epoch=66, force_reblend=True
)
data_collator = DataCollator(text_tokenizer)
dataloader = DataLoader(trainset, batch_size=16, shuffle=True, collate_fn=data_collator, num_workers=4)
for step, batch in enumerate(dataloader):
filenames = batch["filenames"]
audio_clips = batch["audio_clips"]
audio_embed_mask = batch["audio_embed_mask"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
print(
'batch {}:'.format(step+1),
audio_clips.shape, audio_embed_mask.shape,
input_ids.shape, attention_mask.shape
)
print('filenames', filenames)
print('audio_embed_mask', audio_embed_mask)
print('input_ids', input_ids)
for input_id in input_ids:
print('-' * 50)
print(text_tokenizer.decode(input_id))
print('attention_mask', attention_mask)
if step == 20:
break
if __name__ == "__main__":
main() |