File size: 6,287 Bytes
003d203
 
 
0e6c023
 
 
aa16383
dcfda89
ec98d3a
4b54c6a
0e6c023
 
 
 
 
 
 
 
ec98d3a
0e6c023
 
 
 
 
 
 
003d203
aa16383
 
 
 
 
 
 
dcfda89
 
 
 
aa16383
dcfda89
 
 
 
 
 
aa16383
dcfda89
5fb3d3c
 
 
 
 
aa16383
 
 
ba5420f
aa16383
dcfda89
 
 
 
 
30b17a2
 
aa16383
 
dcfda89
aa16383
 
 
dcfda89
 
 
 
aa16383
30b17a2
 
aa16383
 
 
e406805
9a3b780
aa16383
 
ba5420f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd0549
aa16383
e7bef73
 
0e6c023
 
 
 
 
 
 
 
 
 
 
 
4b54c6a
7eef510
430a7a9
4b54c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dbd7e8
4b54c6a
 
 
53ac342
 
dcfda89
a181ad3
2ca2e3d
 
 
991bda2
2ca2e3d
ba5420f
 
e406805
53ac342
 
aa16383
 
 
2ca2e3d
c74d7e5
53ac342
c74d7e5
 
 
2ca2e3d
 
ccd0549
9702cba
c74d7e5
aa16383
 
 
dcfda89
 
53ac342
6039455
9a38c25
 
 
 
6ba9354
30b17a2
 
dcfda89
 
 
6039455
 
aa16383
0e6c023
ba5420f
 
 
 
53ac342
6039455
 
ba5420f
 
 
 
 
 
 
6039455
aaeb1cd
ba5420f
 
53ac342
 
 
 
 
2e0029e
7eef510
53ac342
4b54c6a
 
 
7021436
4b54c6a
7eef510
4b54c6a
 
3eb1a6a
 
53ac342
 
0e6c023
53ac342
 
94386db
0e6c023
 
003d203
0e6c023
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr
import spaces
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from diffusers import FluxFillPipeline
from PIL import Image, ImageOps
from sam2.sam2_image_predictor import SAM2ImagePredictor
import numpy as np

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")


transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

pipe = FluxFillPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")


def prepare_image_and_mask(
    image,
    padding_top=0,
    padding_bottom=0,
    padding_left=0,
    padding_right=0,
):
    image = load_img(image).convert("RGB")
    # expand image (left,top,right,bottom)
    background = ImageOps.expand(
        image,
        border=(padding_left, padding_top, padding_right, padding_bottom),
        fill="white",
    )
    mask = Image.new("RGB", image.size, "black")
    mask = ImageOps.expand(
        mask,
        border=(padding_left, padding_top, padding_right, padding_bottom),
        fill="white",
    )
    return background, mask


def outpaint(
    image,
    padding_top=0,
    padding_bottom=0,
    padding_left=0,
    padding_right=0,
    prompt="",
    num_inference_steps=28,
    guidance_scale=50,
):
    background, mask = prepare_image_and_mask(
        image, padding_top, padding_bottom, padding_left, padding_right
    )

    result = pipe(
        prompt=prompt,
        height=background.height,
        width=background.width,
        image=background,
        mask_image=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
    ).images[0]

    result = result.convert("RGBA")

    return result


def inpaint(
    image,
    mask,
    prompt="",
    num_inference_steps=28,
    guidance_scale=50,
):
    background = image.convert("RGB")
    mask = mask.convert("L")

    result = pipe(
        prompt=prompt,
        height=background.height,
        width=background.width,
        image=background,
        mask_image=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
    ).images[0]

    result = result.convert("RGBA")

    return result


def rmbg(image=None, url=None):
    if image is None:
        image = url
    image = load_img(image).convert("RGB")
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image


def mask_generation(image=None, d=None):
    d = eval(d)  # convert this to dictionary
    predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
    predictor.set_image(image)
    input_point = np.array(d["input_points"])
    input_label = np.array(d["input_labels"])
    masks, scores, logits = predictor.predict(
        point_coords=input_point,
        point_labels=input_label,
        multimask_output=True,
    )
    sorted_ind = np.argsort(scores)[::-1]
    masks = masks[sorted_ind]
    scores = scores[sorted_ind]
    logits = logits[sorted_ind]

    out = []
    for i in range(len(masks)):
        m = Image.fromarray(masks[i] * 255).convert("L")
        comp = Image.composite(image, m, m)
        out.append((comp, f"image {i}"))

    return out


@spaces.GPU
def main(*args):
    api_num = args[0]
    args = args[1:]
    if api_num == 1:
        return rmbg(*args)
    elif api_num == 2:
        return outpaint(*args)
    elif api_num == 3:
        return inpaint(*args)
    elif api_num == 4:
        return mask_generation(*args)


rmbg_tab = gr.Interface(
    fn=main,
    inputs=[
        gr.Number(1, interactive=False),
        "image",
        gr.Text("", label="url"),
    ],
    outputs=["image"],
    api_name="rmbg",
    examples=[[1, "./assets/Inpainting mask.png", ""]],
    cache_examples=False,
    description="pass an image or a url of an image",
)

outpaint_tab = gr.Interface(
    fn=main,
    inputs=[
        gr.Number(2, interactive=False),
        gr.Image(label="image", type="pil"),
        gr.Number(label="padding top"),
        gr.Number(label="padding bottom"),
        gr.Number(label="padding left"),
        gr.Number(label="padding right"),
        gr.Text(label="prompt"),
        gr.Number(value=50, label="num_inference_steps"),
        gr.Number(value=28, label="guidance_scale"),
    ],
    outputs=["image"],
    api_name="outpainting",
    examples=[[2, "./assets/rocket.png", 100, 0, 0, 0, "", 50, 28]],
    cache_examples=False,
)


inpaint_tab = gr.Interface(
    fn=main,
    inputs=[
        gr.Number(3, interactive=False),
        gr.Image(label="image", type="pil"),
        gr.Image(label="mask", type="pil"),
        gr.Text(label="prompt"),
        gr.Number(value=50, label="num_inference_steps"),
        gr.Number(value=28, label="guidance_scale"),
    ],
    outputs=["image"],
    api_name="inpaint",
    examples=[[3, "./assets/rocket.png", "./assets/Inpainting mask.png"]],
    cache_examples=False,
    description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space",
)


sam2_tab = gr.Interface(
    main,
    inputs=[
        gr.Number(4, interactive=False),
        gr.Image(type="pil"),
        gr.Text(),
    ],
    outputs=gr.Gallery(),
    examples=[
        [
            4,
            "./assets/truck.jpg",
            '{"input_points": [[500, 375], [1125, 625]], "input_labels": [1, 0]}',
        ]
    ],
    api_name="sam2",
    cache_examples=False,
)

demo = gr.TabbedInterface(
    [rmbg_tab, outpaint_tab, inpaint_tab, sam2_tab],
    ["remove background", "outpainting", "inpainting", "sam2"],
    title="Utilities that require GPU",
)


demo.launch()