File size: 6,287 Bytes
003d203 0e6c023 aa16383 dcfda89 ec98d3a 4b54c6a 0e6c023 ec98d3a 0e6c023 003d203 aa16383 dcfda89 aa16383 dcfda89 aa16383 dcfda89 5fb3d3c aa16383 ba5420f aa16383 dcfda89 30b17a2 aa16383 dcfda89 aa16383 dcfda89 aa16383 30b17a2 aa16383 e406805 9a3b780 aa16383 ba5420f ccd0549 aa16383 e7bef73 0e6c023 4b54c6a 7eef510 430a7a9 4b54c6a 9dbd7e8 4b54c6a 53ac342 dcfda89 a181ad3 2ca2e3d 991bda2 2ca2e3d ba5420f e406805 53ac342 aa16383 2ca2e3d c74d7e5 53ac342 c74d7e5 2ca2e3d ccd0549 9702cba c74d7e5 aa16383 dcfda89 53ac342 6039455 9a38c25 6ba9354 30b17a2 dcfda89 6039455 aa16383 0e6c023 ba5420f 53ac342 6039455 ba5420f 6039455 aaeb1cd ba5420f 53ac342 2e0029e 7eef510 53ac342 4b54c6a 7021436 4b54c6a 7eef510 4b54c6a 3eb1a6a 53ac342 0e6c023 53ac342 94386db 0e6c023 003d203 0e6c023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
import spaces
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from diffusers import FluxFillPipeline
from PIL import Image, ImageOps
from sam2.sam2_image_predictor import SAM2ImagePredictor
import numpy as np
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")
def prepare_image_and_mask(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
):
image = load_img(image).convert("RGB")
# expand image (left,top,right,bottom)
background = ImageOps.expand(
image,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
mask = Image.new("RGB", image.size, "black")
mask = ImageOps.expand(
mask,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
return background, mask
def outpaint(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
background, mask = prepare_image_and_mask(
image, padding_top, padding_bottom, padding_left, padding_right
)
result = pipe(
prompt=prompt,
height=background.height,
width=background.width,
image=background,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
def inpaint(
image,
mask,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
background = image.convert("RGB")
mask = mask.convert("L")
result = pipe(
prompt=prompt,
height=background.height,
width=background.width,
image=background,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
def rmbg(image=None, url=None):
if image is None:
image = url
image = load_img(image).convert("RGB")
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def mask_generation(image=None, d=None):
d = eval(d) # convert this to dictionary
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
predictor.set_image(image)
input_point = np.array(d["input_points"])
input_label = np.array(d["input_labels"])
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True,
)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
scores = scores[sorted_ind]
logits = logits[sorted_ind]
out = []
for i in range(len(masks)):
m = Image.fromarray(masks[i] * 255).convert("L")
comp = Image.composite(image, m, m)
out.append((comp, f"image {i}"))
return out
@spaces.GPU
def main(*args):
api_num = args[0]
args = args[1:]
if api_num == 1:
return rmbg(*args)
elif api_num == 2:
return outpaint(*args)
elif api_num == 3:
return inpaint(*args)
elif api_num == 4:
return mask_generation(*args)
rmbg_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(1, interactive=False),
"image",
gr.Text("", label="url"),
],
outputs=["image"],
api_name="rmbg",
examples=[[1, "./assets/Inpainting mask.png", ""]],
cache_examples=False,
description="pass an image or a url of an image",
)
outpaint_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(2, interactive=False),
gr.Image(label="image", type="pil"),
gr.Number(label="padding top"),
gr.Number(label="padding bottom"),
gr.Number(label="padding left"),
gr.Number(label="padding right"),
gr.Text(label="prompt"),
gr.Number(value=50, label="num_inference_steps"),
gr.Number(value=28, label="guidance_scale"),
],
outputs=["image"],
api_name="outpainting",
examples=[[2, "./assets/rocket.png", 100, 0, 0, 0, "", 50, 28]],
cache_examples=False,
)
inpaint_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(3, interactive=False),
gr.Image(label="image", type="pil"),
gr.Image(label="mask", type="pil"),
gr.Text(label="prompt"),
gr.Number(value=50, label="num_inference_steps"),
gr.Number(value=28, label="guidance_scale"),
],
outputs=["image"],
api_name="inpaint",
examples=[[3, "./assets/rocket.png", "./assets/Inpainting mask.png"]],
cache_examples=False,
description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space",
)
sam2_tab = gr.Interface(
main,
inputs=[
gr.Number(4, interactive=False),
gr.Image(type="pil"),
gr.Text(),
],
outputs=gr.Gallery(),
examples=[
[
4,
"./assets/truck.jpg",
'{"input_points": [[500, 375], [1125, 625]], "input_labels": [1, 0]}',
]
],
api_name="sam2",
cache_examples=False,
)
demo = gr.TabbedInterface(
[rmbg_tab, outpaint_tab, inpaint_tab, sam2_tab],
["remove background", "outpainting", "inpainting", "sam2"],
title="Utilities that require GPU",
)
demo.launch()
|