not-lain commited on
Commit
7eef510
·
1 Parent(s): 3eb1a6a

switch to text field

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -8,7 +8,6 @@ from diffusers import FluxFillPipeline
8
  from PIL import Image, ImageOps
9
  from sam2.sam2_image_predictor import SAM2ImagePredictor
10
  import numpy as np
11
- import matplotlib.pyplot as plt
12
 
13
  torch.set_float32_matmul_precision(["high", "highest"][0])
14
 
@@ -125,6 +124,7 @@ def rmbg(image=None, url=None):
125
 
126
 
127
  def mask_generation(image=None, d=None):
 
128
  predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny")
129
  predictor.set_image(image)
130
  input_point = np.array(d["input_points"])
@@ -220,14 +220,14 @@ sam2_tab = gr.Interface(
220
  inputs=[
221
  gr.Number(4, interactive=False),
222
  gr.Image(type="pil"),
223
- gr.JSON(),
224
  ],
225
  outputs=gr.Gallery(),
226
  examples=[
227
  [
228
  4,
229
  "./assets/truck.jpg",
230
- {"input_points": [[500, 375], [1125, 625]], "input_labels": [1, 0]},
231
  ]
232
  ],
233
  api_name="sam2",
 
8
  from PIL import Image, ImageOps
9
  from sam2.sam2_image_predictor import SAM2ImagePredictor
10
  import numpy as np
 
11
 
12
  torch.set_float32_matmul_precision(["high", "highest"][0])
13
 
 
124
 
125
 
126
  def mask_generation(image=None, d=None):
127
+ d = eval(d) # convert this to dictionary
128
  predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny")
129
  predictor.set_image(image)
130
  input_point = np.array(d["input_points"])
 
220
  inputs=[
221
  gr.Number(4, interactive=False),
222
  gr.Image(type="pil"),
223
+ gr.Text(),
224
  ],
225
  outputs=gr.Gallery(),
226
  examples=[
227
  [
228
  4,
229
  "./assets/truck.jpg",
230
+ '{"input_points": [[500, 375], [1125, 625]], "input_labels": [1, 0]}',
231
  ]
232
  ],
233
  api_name="sam2",