Spaces:
Running
on
Zero
Running
on
Zero
This Pull Request upgrades to Llama 3.2 11B
#2
by
Fabrice-TIERCELIN
- opened
- .gitattributes +1 -0
- Example1.webp +0 -0
- Example2.png +3 -0
- README.md +2 -4
- app.py +89 -132
- requirements.txt +2 -8
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Example2.png filter=lfs diff=lfs merge=lfs -text
|
Example1.webp
ADDED
Example2.png
ADDED
Git LFS Details
|
README.md
CHANGED
@@ -4,12 +4,10 @@ emoji: πwπ
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
short_description: A retrieval system with chatbot integration
|
11 |
-
thumbnail: >-
|
12 |
-
https://cdn-uploads.huggingface.co/production/uploads/6527e89a8808d80ccff88b7a/XVgtQiizeFHIUUj1huwdv.png
|
13 |
---
|
14 |
|
15 |
-
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.2.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
short_description: A retrieval system with chatbot integration
|
|
|
|
|
11 |
---
|
12 |
|
13 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
CHANGED
@@ -1,140 +1,97 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
import os
|
5 |
-
import spaces
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
7 |
import torch
|
8 |
from threading import Thread
|
9 |
-
|
10 |
-
from
|
11 |
import time
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
data = dataset["train"]
|
19 |
-
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
|
20 |
-
|
21 |
-
|
22 |
-
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
23 |
-
|
24 |
-
# use quantization to lower GPU usage
|
25 |
-
bnb_config = BitsAndBytesConfig(
|
26 |
-
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
27 |
-
)
|
28 |
-
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id,token=token)
|
30 |
-
model = AutoModelForCausalLM.from_pretrained(
|
31 |
-
model_id,
|
32 |
-
torch_dtype=torch.bfloat16,
|
33 |
-
device_map="auto",
|
34 |
-
quantization_config=bnb_config,
|
35 |
-
token=token
|
36 |
-
)
|
37 |
-
terminators = [
|
38 |
-
tokenizer.eos_token_id,
|
39 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
40 |
-
]
|
41 |
-
|
42 |
-
SYS_PROMPT = """You are an assistant for answering questions.
|
43 |
-
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|
44 |
-
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
def search(query: str, k: int = 3 ):
|
49 |
-
"""a function that embeds a new query and returns the most probable results"""
|
50 |
-
embedded_query = ST.encode(query) # embed new query
|
51 |
-
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
52 |
-
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
|
53 |
-
k=k # get only top k results
|
54 |
-
)
|
55 |
-
return scores, retrieved_examples
|
56 |
-
|
57 |
-
def format_prompt(prompt,retrieved_documents,k):
|
58 |
-
"""using the retrieved documents we will prompt the model to generate our responses"""
|
59 |
-
PROMPT = f"Question:{prompt}\nContext:"
|
60 |
-
for idx in range(k) :
|
61 |
-
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
|
62 |
-
return PROMPT
|
63 |
|
64 |
|
65 |
@spaces.GPU
|
66 |
-
def
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
messages
|
72 |
-
|
73 |
-
|
74 |
-
messages,
|
75 |
-
add_generation_prompt=True,
|
76 |
-
return_tensors="pt"
|
77 |
-
).to(model.device)
|
78 |
-
outputs = model.generate(
|
79 |
-
input_ids,
|
80 |
-
max_new_tokens=1024,
|
81 |
-
eos_token_id=terminators,
|
82 |
-
do_sample=True,
|
83 |
-
temperature=0.6,
|
84 |
-
top_p=0.9,
|
85 |
-
)
|
86 |
-
streamer = TextIteratorStreamer(
|
87 |
-
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
88 |
-
)
|
89 |
-
generate_kwargs = dict(
|
90 |
-
input_ids= input_ids,
|
91 |
-
streamer=streamer,
|
92 |
-
max_new_tokens=1024,
|
93 |
-
do_sample=True,
|
94 |
-
top_p=0.95,
|
95 |
-
temperature=0.75,
|
96 |
-
eos_token_id=terminators,
|
97 |
-
)
|
98 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
99 |
-
t.start()
|
100 |
-
|
101 |
-
outputs = []
|
102 |
-
for text in streamer:
|
103 |
-
outputs.append(text)
|
104 |
-
yield "".join(outputs)
|
105 |
-
|
106 |
-
|
107 |
-
TITLE = "# RAG"
|
108 |
-
|
109 |
-
DESCRIPTION = """
|
110 |
-
A rag pipeline with a chatbot feature
|
111 |
-
|
112 |
-
Resources used to build this project :
|
113 |
-
|
114 |
-
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
|
115 |
-
* dataset : https://huggingface.co/datasets/not-lain/wikipedia
|
116 |
-
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index
|
117 |
-
* chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
|
118 |
-
* Full documentation : https://huggingface.co/blog/not-lain/rag-chatbot-using-llama3
|
119 |
-
"""
|
120 |
-
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
)
|
140 |
-
demo.launch(debug=True)
|
|
|
1 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
|
|
|
|
|
|
4 |
import torch
|
5 |
from threading import Thread
|
6 |
+
import gradio as gr
|
7 |
+
from gradio import FileData
|
8 |
import time
|
9 |
+
import spaces
|
10 |
+
import re
|
11 |
+
ckpt = "Xkev/Llama-3.2V-11B-cot"
|
12 |
+
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
13 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
14 |
+
processor = AutoProcessor.from_pretrained(ckpt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
@spaces.GPU
|
18 |
+
def bot_streaming(message, history, max_new_tokens=250):
|
19 |
+
|
20 |
+
txt = message["text"]
|
21 |
+
ext_buffer = f"{txt}"
|
22 |
+
|
23 |
+
messages= []
|
24 |
+
images = []
|
25 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
for i, msg in enumerate(history):
|
28 |
+
if isinstance(msg[0], tuple):
|
29 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
30 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
31 |
+
images.append(Image.open(msg[0][0]).convert("RGB"))
|
32 |
+
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
33 |
+
# messages are already handled
|
34 |
+
pass
|
35 |
+
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
36 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
37 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
38 |
+
|
39 |
+
# add current message
|
40 |
+
if len(message["files"]) == 1:
|
41 |
+
|
42 |
+
if isinstance(message["files"][0], str): # examples
|
43 |
+
image = Image.open(message["files"][0]).convert("RGB")
|
44 |
+
else: # regular input
|
45 |
+
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
46 |
+
images.append(image)
|
47 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
48 |
+
else:
|
49 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
50 |
+
|
51 |
+
|
52 |
+
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
53 |
+
|
54 |
+
if images == []:
|
55 |
+
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
56 |
+
else:
|
57 |
+
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
58 |
+
|
59 |
+
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
60 |
+
|
61 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.6, top_p=0.9)
|
62 |
+
generated_text = ""
|
63 |
+
|
64 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
65 |
+
thread.start()
|
66 |
+
buffer = ""
|
67 |
+
|
68 |
+
for new_text in streamer:
|
69 |
+
buffer += new_text
|
70 |
+
generated_text_without_prompt = buffer
|
71 |
+
time.sleep(0.01)
|
72 |
+
|
73 |
+
buffer = re.sub(r"<(\w+)>", r"\<\1\>", buffer)
|
74 |
+
buffer = re.sub(r"</(\w+)>", r"\</\1\>", buffer)
|
75 |
+
|
76 |
+
yield buffer
|
77 |
+
|
78 |
+
|
79 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
|
80 |
+
textbox=gr.MultimodalTextbox(),
|
81 |
+
additional_inputs = [gr.Slider(
|
82 |
+
minimum=512,
|
83 |
+
maximum=1024,
|
84 |
+
value=512,
|
85 |
+
step=1,
|
86 |
+
label="Maximum number of new tokens to generate",
|
87 |
+
)
|
88 |
+
],
|
89 |
+
examples=[[{"text": "What is on the flower?", "files": ["./Example1.webp"]},512],
|
90 |
+
[{"text": "How to make this pastry?", "files": ["./Example2.png"]},512]],
|
91 |
+
cache_examples=False,
|
92 |
+
description="Upload an image, and start chatting about it. To learn more about LLaVA-CoT, visit [our GitHub page](https://github.com/PKU-YuanGroup/LLaVA-CoT).",
|
93 |
+
stop_btn="Stop Generation",
|
94 |
+
fill_height=True,
|
95 |
+
multimodal=True)
|
96 |
|
97 |
+
demo.launch(debug=True)
|
|
requirements.txt
CHANGED
@@ -1,9 +1,3 @@
|
|
1 |
-
|
2 |
-
torch>=2
|
3 |
spaces
|
4 |
-
transformers
|
5 |
-
sentence-transformers
|
6 |
-
faiss-gpu
|
7 |
-
datasets
|
8 |
-
accelerate
|
9 |
-
bitsandbytes
|
|
|
1 |
+
torch
|
|
|
2 |
spaces
|
3 |
+
git+https://github.com/huggingface/transformers.git
|
|
|
|
|
|
|
|
|
|