Spaces:
Runtime error
Runtime error
File size: 5,888 Bytes
2dd7bee 99561e6 f2f8150 7d98092 870fb2b a5f31f0 4fbfe72 062e3be 78198ac ed60e56 072101a a5f31f0 fb2d7e5 dc87a8c acecbbf a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 4fbfe72 a5f31f0 072101a acecbbf 072101a acecbbf 072101a 19e5e9a 072101a 19e5e9a 072101a 19e5e9a 062e3be a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf 062e3be acecbbf a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 4fbfe72 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf 4fbfe72 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf a5f31f0 acecbbf ed60e56 a5f31f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
import yfinance as yf
import pandas as pd
import cufflinks as cf
import datetime
import plotly.graph_objects as go
from bs4 import BeautifulSoup
import requests
import os
from datetime import date, timedelta
from transformers import pipeline
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from contextlib import redirect_stdout
from io import StringIO
def scrapper (start_date):
d0 = start_date
d1 = datetime.date(2008, 1, 1)
delta = d0 - d1
#st.write(delta)
Begindatestring = start_date
val = 39448 + int(delta.days)
url = 'https://economictimes.indiatimes.com/archivelist/year-'+str(Begindatestring.year)+',month-'+str(Begindatestring.month)+',starttime-'+str(val)+'.cms' # Replace with your URL
response = requests.get(url)
if response.status_code == 200:
html_text = response.text
soup = BeautifulSoup(html_text, "lxml")
else:
gg=0
jobs = soup.find_all("li")
headlines = []
for job in jobs:
try:
target_element = job.find("a")
target_element.text
headlines.append(target_element.text)
except:
continue
return headlines
# App title
st.markdown('''
# Sovrenn Market Sentiment Indicator App
Shown are the stock price data for the selected company!
**Credits**
- App built by SRL
''')
st.write('---')
# Sidebar
st.sidebar.subheader('Query parameters')
start_date = st.sidebar.date_input("Start date", datetime.date(2023,9, 20))
#start_date = start_date - datetime.timedelta(days=1)
end_date = start_date + datetime.timedelta(days=14)
# User input for the stock ticker symbol
tickerSymbol = st.sidebar.text_input('Enter Stock Ticker Symbol')
if tickerSymbol:
try:
tickerData = yf.Ticker(tickerSymbol) # Get ticker data
tickerDf = tickerData.history(period='1d', start=start_date, end=end_date) # Get the historical prices for this ticker
string_name = tickerData.info.get('longName', 'Company Name Not Available')
st.header('**%s**' % string_name)
# Try to get the business summary, handle KeyError if not available
try:
string_summary = tickerData.info['longBusinessSummary']
st.info(string_summary)
except KeyError:
st.warning("Business summary not available for this company.")
# Ticker data
st.header('**Ticker data**')
st.write(tickerDf)
# Create a candlestick chart and volume bar chart
fig_candlestick = go.Figure(data=[go.Candlestick(x=tickerDf.index,
open=tickerDf['Open'],
high=tickerDf['High'],
low=tickerDf['Low'],
close=tickerDf['Close'])])
fig_volume = go.Figure(data=[go.Bar(x=tickerDf.index, y=tickerDf['Volume'])])
st.header('**Candlestick Chart**')
st.plotly_chart(fig_candlestick)
st.header('**Volume Bar Chart**')
st.plotly_chart(fig_volume)
st.write(start_date)
tickerDf = pd.DataFrame(tickerDf).reset_index()
# st.write(tickerDf)
#date = datetime.date(start_date)
date_str = start_date.strftime("%Y-%m-%d")
#st.write(date_str)
df = tickerDf[tickerDf["Date"]==date_str]
#st.write(df)
if (df["Close"][0] > df["Open"][0] ):
st.write("NSE has uptrend on " +date_str )
if (df["Close"][0] < df["Open"][0] ):
st.write(" NSE has downdtrend on " +date_str )
except:
st.write("Stock Data of this Index on the selected Date is not available \n")
Begindatestring = start_date
# Create a dummy stream to suppress output
dummy_stream = StringIO()
with redirect_stdout(dummy_stream):
headlines = scrapper(start_date)
index = [idx for idx, s in enumerate(headlines) if s=='Most Read' ][0]
del headlines[index:]
news = pd.DataFrame({"News": headlines})
news.insert(0, 'Date', Begindatestring)
news = news.drop_duplicates()
news = news.dropna(how='any')
news = news.reset_index(drop=True)
tokenizer = AutoTokenizer.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification")
model = AutoModelForSequenceClassification.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
length = len(news[ 'News'].to_list())
news_list = news[ 'News'].to_list()
df = pd.DataFrame()
for i in range (0, length):
results = nlp(news_list[i])
df.loc[i, "News"] = news_list[i]
df.loc[i , 'label'] = results[0]["label"]
df.loc[i , 'score'] = results[0]["score"]
if(i%100 ==0): st.write("Articles Processed Number "+ str(i))
bullish_rows = df[df['label'] == 'bullish']
bullish_score_sum = bullish_rows['score'].sum()
num_bullish_rows = len(bullish_rows)
average_score_for_bullish = bullish_score_sum / num_bullish_rows
bearish_rows = df[df['label'] == 'bearish']
bearish_score_sum = bearish_rows['score'].sum()
num_bearish_rows = len(bearish_rows)
average_score_for_bearish = bearish_score_sum / num_bearish_rows
if(average_score_for_bearish > average_score_for_bullish):
st.write("Stock will go down")
if(average_score_for_bearish < average_score_for_bullish):
st.write("Stock will go up")
else:
st.warning("Please enter a valid Stock Ticker Symbol.") |