Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,16 @@ import yfinance as yf
|
|
3 |
import pandas as pd
|
4 |
import cufflinks as cf
|
5 |
import datetime
|
6 |
-
import datetime.datetime as dt
|
7 |
import plotly.graph_objects as go
|
8 |
from bs4 import BeautifulSoup
|
9 |
import requests
|
10 |
import os
|
11 |
-
from datetime import date, timedelta
|
12 |
|
13 |
# App title
|
14 |
st.markdown('''
|
15 |
# Sovrenn Market Sentiment Indicator App
|
16 |
Shown are the stock price data for the selected company!
|
17 |
-
|
18 |
**Credits**
|
19 |
- App built by SRL
|
20 |
''')
|
@@ -84,72 +82,70 @@ if tickerSymbol:
|
|
84 |
|
85 |
|
86 |
|
87 |
-
else:
|
88 |
-
st.warning("Please enter a valid Stock Ticker Symbol.")
|
89 |
|
90 |
|
91 |
|
92 |
|
93 |
-
d0 = start_date
|
94 |
-
d1 = dt.date(2008, 1, 1)
|
95 |
-
delta = d0 - d1
|
96 |
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
|
100 |
|
|
|
101 |
|
102 |
-
#Begindatestring = datetime.strptime(Begindatestring, "%Y-%m-%d").date()
|
103 |
|
|
|
104 |
|
105 |
-
val = 39448 + int(delta.days)
|
106 |
-
url = 'https://economictimes.indiatimes.com/archivelist/year-'+str(Begindatestring.year)+',month-'+str(Begindatestring.month)+',starttime-'+str(val)+'.cms' # Replace with your URL
|
107 |
|
108 |
-
|
|
|
109 |
|
110 |
-
|
111 |
-
html_text = response.text
|
112 |
-
soup = BeautifulSoup(html_text, "lxml")
|
113 |
-
else:
|
114 |
-
st.write(f"Failed to fetch the page. Status code: {response.status_code}")
|
115 |
-
jobs = soup.find_all("li")
|
116 |
-
headlines = []
|
117 |
-
for job in jobs:
|
118 |
-
try:
|
119 |
-
target_element = job.find("a")
|
120 |
-
target_element.text
|
121 |
-
headlines.append(target_element.text)
|
122 |
-
except:
|
123 |
-
continue
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
|
128 |
-
index = [idx for idx, s in enumerate(headlines) if s=='Most Read' ][0]
|
129 |
-
del headlines[index:]
|
130 |
-
news = pd.DataFrame({"News": headlines})
|
131 |
-
news.insert(0, 'Date', Begindatestring)
|
132 |
-
#st.dataframe(df[0:1])
|
133 |
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
news = news.drop_duplicates()
|
136 |
-
news = news.dropna(how='any')
|
137 |
-
news = news.reset_index(drop=True)
|
138 |
|
139 |
-
|
140 |
-
|
|
|
141 |
|
|
|
|
|
142 |
|
143 |
-
from transformers import pipeline
|
144 |
-
import torch
|
145 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
146 |
|
147 |
-
|
|
|
|
|
148 |
|
|
|
149 |
|
150 |
-
tokenizer = AutoTokenizer.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification")
|
151 |
-
model = AutoModelForSequenceClassification.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification")
|
152 |
|
|
|
|
|
153 |
|
154 |
|
155 |
|
@@ -159,55 +155,55 @@ model = AutoModelForSequenceClassification.from_pretrained("nickmuchi/sec-bert-f
|
|
159 |
|
160 |
|
161 |
|
162 |
-
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
|
163 |
|
164 |
-
|
165 |
-
news_list = news[ 'News'].to_list()
|
166 |
|
167 |
-
|
168 |
-
|
169 |
|
|
|
|
|
170 |
|
171 |
-
results = nlp(news_list[i])
|
172 |
-
df.loc[i, "News"] = news_list[i]
|
173 |
-
df.loc[i , 'label'] = results[0]["label"]
|
174 |
-
df.loc[i , 'score'] = results[0]["score"]
|
175 |
|
|
|
|
|
|
|
|
|
176 |
|
177 |
|
178 |
-
#st.dataframe(df)
|
179 |
|
180 |
-
#
|
181 |
-
bullish_rows = df[df['label'] == 'bullish']
|
182 |
|
183 |
-
#
|
184 |
-
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
average_score_for_bullish = bullish_score_sum / num_bullish_rows
|
189 |
|
|
|
|
|
|
|
190 |
|
191 |
-
# Filter the DataFrame to get rows with "neutral" sentiment
|
192 |
-
bearish_rows = df[df['label'] == 'bearish']
|
193 |
|
194 |
-
#
|
195 |
-
|
196 |
|
197 |
-
#
|
198 |
-
|
199 |
|
200 |
-
#
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
if(average_score_for_bearish > average_score_for_bullish):
|
205 |
-
st.write("Stock will go down")
|
206 |
-
if(average_score_for_bearish < average_score_for_bullish):
|
207 |
-
st.write("Stock will go up")
|
208 |
|
|
|
|
|
209 |
|
210 |
|
|
|
|
|
|
|
|
|
211 |
|
212 |
|
213 |
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
import cufflinks as cf
|
5 |
import datetime
|
|
|
6 |
import plotly.graph_objects as go
|
7 |
from bs4 import BeautifulSoup
|
8 |
import requests
|
9 |
import os
|
10 |
+
from datetime import date, timedelta
|
11 |
|
12 |
# App title
|
13 |
st.markdown('''
|
14 |
# Sovrenn Market Sentiment Indicator App
|
15 |
Shown are the stock price data for the selected company!
|
|
|
16 |
**Credits**
|
17 |
- App built by SRL
|
18 |
''')
|
|
|
82 |
|
83 |
|
84 |
|
|
|
|
|
85 |
|
86 |
|
87 |
|
88 |
|
|
|
|
|
|
|
89 |
|
90 |
+
d0 = start_date
|
91 |
+
d1 = datetime.date(2008, 1, 1)
|
92 |
+
delta = d0 - d1
|
93 |
|
94 |
+
st.write(delta)
|
95 |
|
96 |
+
Begindatestring = start_date
|
97 |
|
|
|
98 |
|
99 |
+
#Begindatestring = datetime.strptime(Begindatestring, "%Y-%m-%d").date()
|
100 |
|
|
|
|
|
101 |
|
102 |
+
val = 39448 + int(delta.days)
|
103 |
+
url = 'https://economictimes.indiatimes.com/archivelist/year-'+str(Begindatestring.year)+',month-'+str(Begindatestring.month)+',starttime-'+str(val)+'.cms' # Replace with your URL
|
104 |
|
105 |
+
response = requests.get(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
if response.status_code == 200:
|
108 |
+
html_text = response.text
|
109 |
+
soup = BeautifulSoup(html_text, "lxml")
|
110 |
+
else:
|
111 |
+
st.write(f"Failed to fetch the page. Status code: {response.status_code}")
|
112 |
+
jobs = soup.find_all("li")
|
113 |
+
headlines = []
|
114 |
+
for job in jobs:
|
115 |
+
try:
|
116 |
+
target_element = job.find("a")
|
117 |
+
target_element.text
|
118 |
+
headlines.append(target_element.text)
|
119 |
+
except:
|
120 |
+
continue
|
121 |
|
122 |
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
index = [idx for idx, s in enumerate(headlines) if s=='Most Read' ][0]
|
126 |
+
del headlines[index:]
|
127 |
+
news = pd.DataFrame({"News": headlines})
|
128 |
+
news.insert(0, 'Date', Begindatestring)
|
129 |
+
#st.dataframe(df[0:1])
|
130 |
|
|
|
|
|
|
|
131 |
|
132 |
+
news = news.drop_duplicates()
|
133 |
+
news = news.dropna(how='any')
|
134 |
+
news = news.reset_index(drop=True)
|
135 |
|
136 |
+
import pandas as pd
|
137 |
+
import numpy as np
|
138 |
|
|
|
|
|
|
|
139 |
|
140 |
+
from transformers import pipeline
|
141 |
+
import torch
|
142 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
143 |
|
144 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
145 |
|
|
|
|
|
146 |
|
147 |
+
tokenizer = AutoTokenizer.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification")
|
148 |
+
model = AutoModelForSequenceClassification.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification")
|
149 |
|
150 |
|
151 |
|
|
|
155 |
|
156 |
|
157 |
|
|
|
158 |
|
159 |
+
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
|
|
|
160 |
|
161 |
+
length = len(news[ 'News'].to_list())
|
162 |
+
news_list = news[ 'News'].to_list()
|
163 |
|
164 |
+
df = pd.DataFrame()
|
165 |
+
for i in range (0, length):
|
166 |
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
results = nlp(news_list[i])
|
169 |
+
df.loc[i, "News"] = news_list[i]
|
170 |
+
df.loc[i , 'label'] = results[0]["label"]
|
171 |
+
df.loc[i , 'score'] = results[0]["score"]
|
172 |
|
173 |
|
|
|
174 |
|
175 |
+
#st.dataframe(df)
|
|
|
176 |
|
177 |
+
# Filter the DataFrame to get rows with "neutral" sentiment
|
178 |
+
bullish_rows = df[df['label'] == 'bullish']
|
179 |
|
180 |
+
# Calculate the sum of the 'Score' column for "neutral" rows
|
181 |
+
bullish_score_sum = bullish_rows['score'].sum()
|
|
|
182 |
|
183 |
+
num_bullish_rows = len(bullish_rows)
|
184 |
+
# Calculate the average score for "neutral" sentiment
|
185 |
+
average_score_for_bullish = bullish_score_sum / num_bullish_rows
|
186 |
|
|
|
|
|
187 |
|
188 |
+
# Filter the DataFrame to get rows with "neutral" sentiment
|
189 |
+
bearish_rows = df[df['label'] == 'bearish']
|
190 |
|
191 |
+
# Calculate the sum of the 'Score' column for "neutral" rows
|
192 |
+
bearish_score_sum = bearish_rows['score'].sum()
|
193 |
|
194 |
+
# Cabearishlculate the number of "neutral" rows
|
195 |
+
num_bearish_rows = len(bearish_rows)
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
# Calculate the average score for "neutral" sentiment
|
198 |
+
average_score_for_bearish = bearish_score_sum / num_bearish_rows
|
199 |
|
200 |
|
201 |
+
if(average_score_for_bearish > average_score_for_bullish):
|
202 |
+
st.write("Stock will go down")
|
203 |
+
if(average_score_for_bearish < average_score_for_bullish):
|
204 |
+
st.write("Stock will go up")
|
205 |
|
206 |
|
207 |
|
208 |
+
else:
|
209 |
+
st.warning("Please enter a valid Stock Ticker Symbol.")
|