Spaces:
Runtime error
Runtime error
import torch | |
# from PIL import Image | |
import gradio as gr | |
import yt_dlp as youtube_dl # 用 yt_dlp 代替 pytube | |
from transformers import pipeline | |
MODEL_NAME = "openai/whisper-large-v3" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
all_special_ids = pipe.tokenizer.all_special_ids | |
transcribe_token_id = all_special_ids[-5] | |
translate_token_id = all_special_ids[-6] | |
def transcribe(microphone, file_upload, task): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"警告:您已经上传了一个音频文件并使用了麦克录制。 " | |
"录制文件将被使用上传的音频将被丢弃。" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "错误: 您必须使用麦克风录制或上传音频文件" | |
file = microphone if microphone is not None else file_upload | |
pipe.model.config.forced_decoder_ids = [ | |
[2, transcribe_token_id if task == "transcribe" else translate_token_id] | |
] | |
# text = pipe(file, return_timestamps=True)["text"] | |
text = pipe(file, return_timestamps=True) | |
# trans to SRT | |
text = convert_to_srt(text) | |
return warn_output + text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url, task): | |
# yt = pt.YouTube(yt_url) # 用 yt_dlp 代替 pytube | |
ydl = youtube_dl.YoutubeDL({"format": "bestaudio"}) # 创建 yt_dlp 对象 | |
info = ydl.extract_info(yt_url, download=False) # 提取视频信息 | |
audio_url = info["formats"][0]["url"] # 获取音频链接 | |
html_embed_str = _return_yt_html_embed(yt_url) | |
# stream = yt.streams.filter(only_audio=True)[0] | |
# stream.download(filename="audio.mp3") | |
ydl.download([audio_url]) # 下载音频文件 | |
pipe.model.config.forced_decoder_ids = [ | |
[2, transcribe_token_id if task == "transcribe" else translate_token_id] | |
] | |
text = pipe("audio.mp3", return_timestamps=True) | |
# text = pipe("audio.mp3", return_timestamps=True)["text"] | |
# trans to SRT | |
text = convert_to_srt(text) | |
return html_embed_str, text | |
# Assuming srt format is a sequence of subtitles with index, time range and text | |
def convert_to_srt(input): | |
output = "" | |
index = 1 | |
for chunk in input["chunks"]: | |
start, end = chunk["timestamp"] | |
text = chunk["text"] | |
if end is None: | |
end = "None" | |
# Convert seconds to hours:minutes:seconds,milliseconds format | |
start = format_time(start) | |
end = format_time(end) | |
output += f"{index}\n{start} --> {end}\n{text}\n\n" | |
index += 1 | |
return output | |
# Helper function to format time | |
def format_time(seconds): | |
if seconds == "None": | |
return seconds | |
hours = int(seconds // 3600) | |
minutes = int((seconds % 3600) // 60) | |
seconds = int(seconds % 60) | |
milliseconds = int((seconds % 1) * 1000) | |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}" | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
gr.inputs.Audio(source="upload", type="filepath", optional=True), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Audio-to-Text-SRT 自动生成字幕", | |
description=( | |
"直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用" | |
f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的" | |
"音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”" | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.inputs.Radio(["转译", "翻译"], label="Task", default="transcribe") | |
], | |
outputs=["html", "text"], | |
layout="horizontal", | |
theme="huggingface", | |
title="Audio-to-Text-SRT 自动生成字幕", | |
description=( | |
"直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用" | |
f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的" | |
"音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”" | |
), | |
allow_flagging="never", | |
) | |
# # Load the images | |
# image1 = Image("wechatqrcode.jpg") | |
# image2 = Image("paypalqrcode.png") | |
# # Define a function that returns the images and captions | |
# def display_images(): | |
# return image1, "WeChat Pay", image2, "PayPal" | |
with demo: | |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["转译音频成文字", "YouTube转字幕"]) | |
# Create a gradio interface with no inputs and four outputs | |
# gr.Interface(display_images, [], [gr.outputs.Image(), gr.outputs.Textbox(), gr.outputs.Image(), gr.outputs.Textbox()], layout="horizontal").launch() | |
demo.launch(enable_queue=True) | |