Spaces:
Runtime error
Runtime error
File size: 7,241 Bytes
6c226f9 8596cb6 6c226f9 8596cb6 6c226f9 8596cb6 6c226f9 c7d9204 408571e 6c226f9 46e56df 6c226f9 46e56df 7d34dd0 46e56df 6c226f9 ed7ad97 3b293ec 6c226f9 ed7ad97 3b293ec 61fd23f 6c226f9 46e56df 3c0cd8e 46e56df 3c0cd8e 46e56df 7d34dd0 6c226f9 7097513 53e44d0 0566672 7097513 6c226f9 46e56df 6c226f9 7d34dd0 6c226f9 46e56df 6c226f9 46e56df 8596cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 100000
YT_LENGTH_LIMIT_S = 360000 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
all_special_ids = pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def transcribe(microphone, file_upload, task):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"警告:您已经上传了一个音频文件并使用了麦克录制。 "
"录制文件将被使用上传的音频将被丢弃。"
)
elif (microphone is None) and (file_upload is None):
return "错误: 您必须使用麦克风录制或上传音频文件"
file = microphone if microphone is not None else file_upload
pipe.model.config.forced_decoder_ids = [
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
]
# text = pipe(file, return_timestamps=True)["text"]
text = pipe(file, return_timestamps=True)
# trans to SRT
text = convert_to_srt(text)
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs,return_timestamps=True)
# text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"language":"zh"}, return_timestamps=True)
# text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
# text = pipe("audio.mp3",return_timestamps=True)
#trans to SRT
text= convert_to_srt(text)
return html_embed_str, text
# SRT prepare
# Assuming srt format is a sequence of subtitles with index, time range and text
def convert_to_srt(input):
output = ""
index = 1
for chunk in input["chunks"]:
start, end = chunk["timestamp"]
text = chunk["text"]
if end is None:
end = "None"
# Convert seconds to hours:minutes:seconds,milliseconds format
start = format_time(start)
end = format_time(end)
output += f"{index}\n{start} --> {end}\n{text}\n\n"
index += 1
return output
# Helper function to format time
def format_time(seconds):
if seconds == "None":
return seconds
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
milliseconds = int((seconds % 1) * 1000)
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Audio-to-Text-SRT 自动生成字幕",
description=(
"直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的"
"音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”"
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
# gr.inputs.Radio(["转译", "翻译"], label="Task", default="transcribe")
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="Audio-to-Text-SRT 自动生成字幕",
description=(
"直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的"
"音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”"
),
allow_flagging="never",
)
# # Load the images
# image1 = Image("wechatqrcode.jpg")
# image2 = Image("paypalqrcode.png")
# # Define a function that returns the images and captions
# def display_images():
# return image1, "WeChat Pay", image2, "PayPal"
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["转译音频成文字", "YouTube转字幕"])
# Create a gradio interface with no inputs and four outputs
# gr.Interface(display_images, [], [gr.outputs.Image(), gr.outputs.Textbox(), gr.outputs.Image(), gr.outputs.Textbox()], layout="horizontal").launch()
demo.launch(enable_queue=True) |