File size: 8,576 Bytes
910dbfd
 
 
d2d66c1
910dbfd
d2d66c1
 
 
 
c144d94
 
 
4e362cd
 
 
99d0cac
910dbfd
 
 
c144d94
d2d66c1
910dbfd
 
c144d94
910dbfd
 
c144d94
 
 
 
 
 
 
910dbfd
 
df844fd
c144d94
 
 
910dbfd
 
 
c144d94
 
99d0cac
 
c144d94
 
910dbfd
c144d94
 
 
 
 
 
d2d66c1
c144d94
 
 
 
 
910dbfd
c144d94
 
 
 
d2d66c1
c144d94
 
 
 
 
d2d66c1
c144d94
 
 
d2d66c1
c144d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
910dbfd
c144d94
 
910dbfd
c144d94
 
 
910dbfd
c144d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e362cd
 
 
 
 
c144d94
4e362cd
 
 
 
910dbfd
4e362cd
 
0e1ed46
4e362cd
 
0e1ed46
4e362cd
 
c144d94
 
 
4e362cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1ed46
4e362cd
 
 
 
 
 
 
 
0e1ed46
4e362cd
 
 
 
 
 
 
 
 
 
0e1ed46
4e362cd
 
 
c144d94
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from abc import ABC, abstractmethod
from typing import Type, TypeVar
import base64
import os
import json
from doc2json import process_docx
import fitz
from PIL import Image
import io
import boto3
from botocore.config import Config
import re
from PIL import Image
import io
import math
import gradio

# constants
log_to_console = False
use_document_message_type = False  # AWS document message type usage

LLMClass = TypeVar('LLMClass', bound='LLM')

class LLM:
    @staticmethod
    def create_llm(model: str) -> Type[LLMClass]:
        return LLM()

    def generate_body(self, message, history):
        messages = []

        # AWS API requires strict user, assi, user, ... sequence
        lastTypeHuman = False

        for human, assi in history:
            if human:
                if lastTypeHuman:
                    last_msg = messages.pop()
                    user_msg_parts = last_msg["content"]
                else:
                    user_msg_parts = []

                if isinstance(human, tuple):
                    user_msg_parts.extend(self._process_file(human[0]))
                elif isinstance(human, gradio.Image):
                    user_msg_parts.extend(self._process_file(human.value["path"]))
                else:
                    user_msg_parts.extend([{"text": human}])

                messages.append({"role": "user", "content": user_msg_parts})
                lastTypeHuman = True
            if assi:
                messages.append({"role": "assistant", "content": [{"text": assi}]})
                lastTypeHuman = False
        
        user_msg_parts = []
        if message.text:
            user_msg_parts.append({"text": message.text})
        if message.files:
            for file in message.files:
                user_msg_parts.extend(self._process_file(file.path))
        
        if user_msg_parts:
            messages.append({"role": "user", "content": user_msg_parts})
        
        return messages

    def _process_file(self, file_path):
        if use_document_message_type and self._is_supported_document_type(file_path):
            return [self._create_document_message(file_path)]
        else:
            return self._encode_file(file_path)

    def _is_supported_document_type(self, file_path):
        supported_extensions = ['.pdf', '.csv', '.doc', '.docx', '.xls', '.xlsx', '.html', '.txt', '.md']
        return os.path.splitext(file_path)[1].lower() in supported_extensions

    def _create_document_message(self, file_path):
        with open(file_path, 'rb') as file:
            file_content = file.read()
        
        file_name = re.sub(r'[^a-zA-Z0-9\s\-\(\)\[\]]', '', os.path.basename(file_path))[:200].strip() or "unnamed_file"
        file_extension = os.path.splitext(file_path)[1][1:]  # Remove the dot

        return {
            "document": {
                "name": file_name,
                "format": file_extension,
                "source": {
                    "bytes": file_content
                }
            }
        }

    def _encode_file(self, fn: str) -> list:
        if fn.endswith(".docx"):
            return [{"text": process_docx(fn)}]
        elif fn.endswith(".pdf"):
            return self._process_pdf_img(fn)
        else:
            with open(fn, mode="rb") as f:
                content = f.read()

            if isinstance(content, bytes):
                try:
                    # try to add as image
                    image_data = self._encode_image(content)
                    return [{"image": image_data}]
                except:
                    # not an image, try text
                    content = content.decode('utf-8', 'replace')
            else:
                content = str(content)

            fname = os.path.basename(fn)
            return [{"text": f"``` {fname}\n{content}\n```"}]

    def _process_pdf_img(self, pdf_fn: str):
        pdf = fitz.open(pdf_fn)
        message_parts = []

        for page in pdf.pages():
            # Create a transformation matrix for rendering at the calculated scale
            mat = fitz.Matrix(0.6, 0.6)
            
            # Render the page to a pixmap
            pix = page.get_pixmap(matrix=mat, alpha=False)
            
            # Convert pixmap to PIL Image
            img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
            
            # Convert PIL Image to bytes
            img_byte_arr = io.BytesIO()
            img.save(img_byte_arr, format='PNG')
            img_byte_arr = img_byte_arr.getvalue()
            
            # Append the message parts
            message_parts.append({"text": f"Page {page.number} of file '{pdf_fn}'"})
            message_parts.append({"image": {
                "format": "png",
                "source": {"bytes": img_byte_arr}
            }})

        pdf.close()

        return message_parts

    def _encode_image(self, image_data):
        try:
            # Open the image using Pillow
            img = Image.open(io.BytesIO(image_data))
            original_format = img.format.lower()
        except IOError:
            raise Exception("Unknown image type")
        
        # check if within the limits for Claude as per https://docs.anthropic.com/en/docs/build-with-claude/vision
        def calculate_tokens(width, height):
            return (width * height) / 750

        tokens = calculate_tokens(img.width, img.height)
        long_edge = max(img.width, img.height)
        format_ok = original_format in ["jpg", "jpeg", "png", "webp"]

        # Check if the image already meets all requirements
        if format_ok and (long_edge <= 1568 and tokens <= 1600 and len(image_data) <= 5 * 1024 * 1024):
            return {
                "format": original_format,
                "source": {"bytes": image_data}
            }

        # If we need to modify the image, proceed with resizing and/or compression
        while long_edge > 1568 or tokens > 1600:
            if long_edge > 1568:
                scale_factor = max(1568 / long_edge, 0.9)
            else:
                scale_factor = max(math.sqrt(1600 / tokens), 0.9)
            
            new_width = int(img.width * scale_factor)
            new_height = int(img.height * scale_factor)
            
            img = img.resize((new_width, new_height), Image.LANCZOS)
            
            long_edge = max(new_width, new_height)
            tokens = calculate_tokens(new_width, new_height)

        # Try to save in original format first
        buffer = io.BytesIO()
        img.save(buffer, format="webp", quality=95)
        image_data = buffer.getvalue()
        
        # If the image is still too large, switch to WebP and compress
        if len(image_data) > 5 * 1024 * 1024:
            quality = 95
            while len(image_data) > 5 * 1024 * 1024:
                quality = max(int(quality * 0.9), 20)
                buffer = io.BytesIO()
                img.save(buffer, format="webp", quality=quality)
                image_data = buffer.getvalue()
                if quality == 20:
                    # If we've reached quality 20 and it's still too large, resize
                    scale_factor = 0.9
                    new_width = int(img.width * scale_factor)
                    new_height = int(img.height * scale_factor)
                    img = img.resize((new_width, new_height), Image.LANCZOS)
                    quality = 95  # Reset quality for the resized image

        return {
            "format": "webp",
            "source": {"bytes": image_data}
        }

    def read_response(self, response_stream):
        for event in response_stream:
            if 'contentBlockDelta' in event:
                yield event['contentBlockDelta']['delta']['text']
            if 'messageStop' in event:
                if log_to_console:
                    print(f"\nStop reason: {event['messageStop']['stopReason']}")
            if 'metadata' in event:
                metadata = event['metadata']
                if 'usage' in metadata and log_to_console:
                    print("\nToken usage:")
                    print(f"Input tokens: {metadata['usage']['inputTokens']}")
                    print(f"Output tokens: {metadata['usage']['outputTokens']}")
                    print(f"Total tokens: {metadata['usage']['totalTokens']}")