Spaces:
Running
Running
File size: 8,576 Bytes
910dbfd d2d66c1 910dbfd d2d66c1 c144d94 4e362cd 99d0cac 910dbfd c144d94 d2d66c1 910dbfd c144d94 910dbfd c144d94 910dbfd df844fd c144d94 910dbfd c144d94 99d0cac c144d94 910dbfd c144d94 d2d66c1 c144d94 910dbfd c144d94 d2d66c1 c144d94 d2d66c1 c144d94 d2d66c1 c144d94 910dbfd c144d94 910dbfd c144d94 910dbfd c144d94 4e362cd c144d94 4e362cd 910dbfd 4e362cd 0e1ed46 4e362cd 0e1ed46 4e362cd c144d94 4e362cd 0e1ed46 4e362cd 0e1ed46 4e362cd 0e1ed46 4e362cd c144d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
from abc import ABC, abstractmethod
from typing import Type, TypeVar
import base64
import os
import json
from doc2json import process_docx
import fitz
from PIL import Image
import io
import boto3
from botocore.config import Config
import re
from PIL import Image
import io
import math
import gradio
# constants
log_to_console = False
use_document_message_type = False # AWS document message type usage
LLMClass = TypeVar('LLMClass', bound='LLM')
class LLM:
@staticmethod
def create_llm(model: str) -> Type[LLMClass]:
return LLM()
def generate_body(self, message, history):
messages = []
# AWS API requires strict user, assi, user, ... sequence
lastTypeHuman = False
for human, assi in history:
if human:
if lastTypeHuman:
last_msg = messages.pop()
user_msg_parts = last_msg["content"]
else:
user_msg_parts = []
if isinstance(human, tuple):
user_msg_parts.extend(self._process_file(human[0]))
elif isinstance(human, gradio.Image):
user_msg_parts.extend(self._process_file(human.value["path"]))
else:
user_msg_parts.extend([{"text": human}])
messages.append({"role": "user", "content": user_msg_parts})
lastTypeHuman = True
if assi:
messages.append({"role": "assistant", "content": [{"text": assi}]})
lastTypeHuman = False
user_msg_parts = []
if message.text:
user_msg_parts.append({"text": message.text})
if message.files:
for file in message.files:
user_msg_parts.extend(self._process_file(file.path))
if user_msg_parts:
messages.append({"role": "user", "content": user_msg_parts})
return messages
def _process_file(self, file_path):
if use_document_message_type and self._is_supported_document_type(file_path):
return [self._create_document_message(file_path)]
else:
return self._encode_file(file_path)
def _is_supported_document_type(self, file_path):
supported_extensions = ['.pdf', '.csv', '.doc', '.docx', '.xls', '.xlsx', '.html', '.txt', '.md']
return os.path.splitext(file_path)[1].lower() in supported_extensions
def _create_document_message(self, file_path):
with open(file_path, 'rb') as file:
file_content = file.read()
file_name = re.sub(r'[^a-zA-Z0-9\s\-\(\)\[\]]', '', os.path.basename(file_path))[:200].strip() or "unnamed_file"
file_extension = os.path.splitext(file_path)[1][1:] # Remove the dot
return {
"document": {
"name": file_name,
"format": file_extension,
"source": {
"bytes": file_content
}
}
}
def _encode_file(self, fn: str) -> list:
if fn.endswith(".docx"):
return [{"text": process_docx(fn)}]
elif fn.endswith(".pdf"):
return self._process_pdf_img(fn)
else:
with open(fn, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
try:
# try to add as image
image_data = self._encode_image(content)
return [{"image": image_data}]
except:
# not an image, try text
content = content.decode('utf-8', 'replace')
else:
content = str(content)
fname = os.path.basename(fn)
return [{"text": f"``` {fname}\n{content}\n```"}]
def _process_pdf_img(self, pdf_fn: str):
pdf = fitz.open(pdf_fn)
message_parts = []
for page in pdf.pages():
# Create a transformation matrix for rendering at the calculated scale
mat = fitz.Matrix(0.6, 0.6)
# Render the page to a pixmap
pix = page.get_pixmap(matrix=mat, alpha=False)
# Convert pixmap to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Append the message parts
message_parts.append({"text": f"Page {page.number} of file '{pdf_fn}'"})
message_parts.append({"image": {
"format": "png",
"source": {"bytes": img_byte_arr}
}})
pdf.close()
return message_parts
def _encode_image(self, image_data):
try:
# Open the image using Pillow
img = Image.open(io.BytesIO(image_data))
original_format = img.format.lower()
except IOError:
raise Exception("Unknown image type")
# check if within the limits for Claude as per https://docs.anthropic.com/en/docs/build-with-claude/vision
def calculate_tokens(width, height):
return (width * height) / 750
tokens = calculate_tokens(img.width, img.height)
long_edge = max(img.width, img.height)
format_ok = original_format in ["jpg", "jpeg", "png", "webp"]
# Check if the image already meets all requirements
if format_ok and (long_edge <= 1568 and tokens <= 1600 and len(image_data) <= 5 * 1024 * 1024):
return {
"format": original_format,
"source": {"bytes": image_data}
}
# If we need to modify the image, proceed with resizing and/or compression
while long_edge > 1568 or tokens > 1600:
if long_edge > 1568:
scale_factor = max(1568 / long_edge, 0.9)
else:
scale_factor = max(math.sqrt(1600 / tokens), 0.9)
new_width = int(img.width * scale_factor)
new_height = int(img.height * scale_factor)
img = img.resize((new_width, new_height), Image.LANCZOS)
long_edge = max(new_width, new_height)
tokens = calculate_tokens(new_width, new_height)
# Try to save in original format first
buffer = io.BytesIO()
img.save(buffer, format="webp", quality=95)
image_data = buffer.getvalue()
# If the image is still too large, switch to WebP and compress
if len(image_data) > 5 * 1024 * 1024:
quality = 95
while len(image_data) > 5 * 1024 * 1024:
quality = max(int(quality * 0.9), 20)
buffer = io.BytesIO()
img.save(buffer, format="webp", quality=quality)
image_data = buffer.getvalue()
if quality == 20:
# If we've reached quality 20 and it's still too large, resize
scale_factor = 0.9
new_width = int(img.width * scale_factor)
new_height = int(img.height * scale_factor)
img = img.resize((new_width, new_height), Image.LANCZOS)
quality = 95 # Reset quality for the resized image
return {
"format": "webp",
"source": {"bytes": image_data}
}
def read_response(self, response_stream):
for event in response_stream:
if 'contentBlockDelta' in event:
yield event['contentBlockDelta']['delta']['text']
if 'messageStop' in event:
if log_to_console:
print(f"\nStop reason: {event['messageStop']['stopReason']}")
if 'metadata' in event:
metadata = event['metadata']
if 'usage' in metadata and log_to_console:
print("\nToken usage:")
print(f"Input tokens: {metadata['usage']['inputTokens']}")
print(f"Output tokens: {metadata['usage']['outputTokens']}")
print(f"Total tokens: {metadata['usage']['totalTokens']}") |