Spaces:
Sleeping
Sleeping
streaming chat, switch to conversation API
Browse files
app.py
CHANGED
@@ -34,34 +34,43 @@ def process_values_js():
|
|
34 |
def bot(message, history, aws_access, aws_secret, aws_token, system_prompt, temperature, max_tokens, model: str, region):
|
35 |
try:
|
36 |
llm = LLM.create_llm(model)
|
37 |
-
|
38 |
|
39 |
config = Config(
|
40 |
-
read_timeout=600,
|
41 |
-
connect_timeout=30,
|
42 |
-
retries={
|
43 |
'max_attempts': 10,
|
44 |
'mode': 'adaptive'
|
45 |
}
|
46 |
)
|
47 |
|
48 |
sess = boto3.Session(
|
49 |
-
aws_access_key_id=aws_access,
|
50 |
-
aws_secret_access_key=aws_secret,
|
51 |
-
aws_session_token=aws_token,
|
52 |
-
region_name=region)
|
53 |
br = sess.client(service_name="bedrock-runtime", config = config)
|
54 |
|
55 |
-
response = br.
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
except Exception as e:
|
61 |
raise gr.Error(f"Error: {str(e)}")
|
62 |
|
63 |
-
return result
|
64 |
-
|
65 |
def import_history(history, file):
|
66 |
with open(file.name, mode="rb") as f:
|
67 |
content = f.read()
|
|
|
34 |
def bot(message, history, aws_access, aws_secret, aws_token, system_prompt, temperature, max_tokens, model: str, region):
|
35 |
try:
|
36 |
llm = LLM.create_llm(model)
|
37 |
+
messages = llm.generate_body(message, history)
|
38 |
|
39 |
config = Config(
|
40 |
+
read_timeout = 600,
|
41 |
+
connect_timeout = 30,
|
42 |
+
retries = {
|
43 |
'max_attempts': 10,
|
44 |
'mode': 'adaptive'
|
45 |
}
|
46 |
)
|
47 |
|
48 |
sess = boto3.Session(
|
49 |
+
aws_access_key_id = aws_access,
|
50 |
+
aws_secret_access_key = aws_secret,
|
51 |
+
aws_session_token = aws_token,
|
52 |
+
region_name = region)
|
53 |
br = sess.client(service_name="bedrock-runtime", config = config)
|
54 |
|
55 |
+
response = br.converse_stream(
|
56 |
+
modelId = model,
|
57 |
+
messages = messages,
|
58 |
+
system = [{"text": system_prompt}],
|
59 |
+
inferenceConfig = {
|
60 |
+
"temperature": temperature,
|
61 |
+
"maxTokens": max_tokens,
|
62 |
+
}
|
63 |
+
)
|
64 |
+
response_stream = response.get('stream')
|
65 |
+
|
66 |
+
partial_response = ""
|
67 |
+
for chunk in llm.read_response(response_stream):
|
68 |
+
partial_response += chunk
|
69 |
+
yield partial_response
|
70 |
|
71 |
except Exception as e:
|
72 |
raise gr.Error(f"Error: {str(e)}")
|
73 |
|
|
|
|
|
74 |
def import_history(history, file):
|
75 |
with open(file.name, mode="rb") as f:
|
76 |
content = f.read()
|
llm.py
CHANGED
@@ -7,211 +7,175 @@ from doc2json import process_docx
|
|
7 |
import fitz
|
8 |
from PIL import Image
|
9 |
import io
|
|
|
|
|
|
|
10 |
|
11 |
# constants
|
12 |
log_to_console = False
|
13 |
-
|
14 |
-
def process_pdf_img(pdf_fn: str):
|
15 |
-
pdf = fitz.open(pdf_fn)
|
16 |
-
message_parts = []
|
17 |
-
|
18 |
-
for page in pdf.pages():
|
19 |
-
# Create a transformation matrix for rendering at the calculated scale
|
20 |
-
mat = fitz.Matrix(0.6, 0.6)
|
21 |
-
|
22 |
-
# Render the page to a pixmap
|
23 |
-
pix = page.get_pixmap(matrix=mat, alpha=False)
|
24 |
-
|
25 |
-
# Convert pixmap to PIL Image
|
26 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
27 |
-
|
28 |
-
# Convert PIL Image to bytes
|
29 |
-
img_byte_arr = io.BytesIO()
|
30 |
-
img.save(img_byte_arr, format='PNG')
|
31 |
-
img_byte_arr = img_byte_arr.getvalue()
|
32 |
-
|
33 |
-
# Encode image to base64
|
34 |
-
base64_encoded = base64.b64encode(img_byte_arr).decode('utf-8')
|
35 |
-
|
36 |
-
# Append the message part
|
37 |
-
message_parts.append({
|
38 |
-
"type": "text",
|
39 |
-
"text": f"Page {page.number} of file '{pdf_fn}'"
|
40 |
-
})
|
41 |
-
message_parts.append({"type": "image", "source": {"type": "base64",
|
42 |
-
"media_type": "image/png",
|
43 |
-
"data": base64_encoded}})
|
44 |
-
|
45 |
-
pdf.close()
|
46 |
-
|
47 |
-
return message_parts
|
48 |
-
|
49 |
-
def encode_image(image_data):
|
50 |
-
"""Generates a prefix for image base64 data in the required format for the
|
51 |
-
four known image formats: png, jpeg, gif, and webp.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
image_data: The image data, encoded in base64.
|
55 |
-
|
56 |
-
Returns:
|
57 |
-
An object encoding the image
|
58 |
-
"""
|
59 |
-
|
60 |
-
# Get the first few bytes of the image data.
|
61 |
-
magic_number = image_data[:4]
|
62 |
-
|
63 |
-
# Check the magic number to determine the image type.
|
64 |
-
if magic_number.startswith(b'\x89PNG'):
|
65 |
-
image_type = 'png'
|
66 |
-
elif magic_number.startswith(b'\xFF\xD8'):
|
67 |
-
image_type = 'jpeg'
|
68 |
-
elif magic_number.startswith(b'GIF89a'):
|
69 |
-
image_type = 'gif'
|
70 |
-
elif magic_number.startswith(b'RIFF'):
|
71 |
-
if image_data[8:12] == b'WEBP':
|
72 |
-
image_type = 'webp'
|
73 |
-
else:
|
74 |
-
# Unknown image type.
|
75 |
-
raise Exception("Unknown image type")
|
76 |
-
else:
|
77 |
-
# Unknown image type.
|
78 |
-
raise Exception("Unknown image type")
|
79 |
-
|
80 |
-
return {"type": "base64",
|
81 |
-
"media_type": "image/" + image_type,
|
82 |
-
"data": base64.b64encode(image_data).decode('utf-8')}
|
83 |
-
|
84 |
-
def encode_file(fn: str) -> list:
|
85 |
-
user_msg_parts = []
|
86 |
-
|
87 |
-
if fn.endswith(".docx"):
|
88 |
-
user_msg_parts.append({"type": "text", "text": process_docx(fn)})
|
89 |
-
elif fn.endswith(".pdf"):
|
90 |
-
user_msg_parts.extend(process_pdf_img(fn))
|
91 |
-
else:
|
92 |
-
with open(fn, mode="rb") as f:
|
93 |
-
content = f.read()
|
94 |
-
|
95 |
-
isImage = False
|
96 |
-
if isinstance(content, bytes):
|
97 |
-
try:
|
98 |
-
# try to add as image
|
99 |
-
content = encode_image(content)
|
100 |
-
isImage = True
|
101 |
-
except:
|
102 |
-
# not an image, try text
|
103 |
-
content = content.decode('utf-8', 'replace')
|
104 |
-
else:
|
105 |
-
content = str(content)
|
106 |
-
|
107 |
-
if isImage:
|
108 |
-
user_msg_parts.append({"type": "image",
|
109 |
-
"source": content})
|
110 |
-
else:
|
111 |
-
fname = os.path.basename(fn)
|
112 |
-
user_msg_parts.append({"type": "text", "text": f"``` {fname}\n{content}\n```"})
|
113 |
-
|
114 |
-
return user_msg_parts
|
115 |
|
116 |
LLMClass = TypeVar('LLMClass', bound='LLM')
|
117 |
-
class LLM(ABC):
|
118 |
-
@abstractmethod
|
119 |
-
def generate_body(message, history, system_prompt, temperature, max_tokens):
|
120 |
-
pass
|
121 |
-
|
122 |
-
@abstractmethod
|
123 |
-
def read_response(message, history, system_prompt, temperature, max_tokens):
|
124 |
-
pass
|
125 |
|
|
|
126 |
@staticmethod
|
127 |
def create_llm(model: str) -> Type[LLMClass]:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
134 |
|
135 |
-
class Claude(LLM):
|
136 |
-
@staticmethod
|
137 |
-
def generate_body(message, history, system_prompt, temperature, max_tokens):
|
138 |
-
history_claude_format = []
|
139 |
-
user_msg_parts = []
|
140 |
for human, assi in history:
|
141 |
if human:
|
142 |
-
if
|
143 |
-
|
|
|
144 |
else:
|
145 |
-
user_msg_parts.append({"type": "text", "text": human})
|
146 |
-
|
147 |
-
if assi is not None:
|
148 |
-
if user_msg_parts:
|
149 |
-
history_claude_format.append({"role": "user", "content": user_msg_parts})
|
150 |
user_msg_parts = []
|
151 |
|
152 |
-
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
user_msg_parts = []
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
"anthropic_version": "bedrock-2023-05-31",
|
167 |
-
"system": system_prompt,
|
168 |
-
"max_tokens": max_tokens,
|
169 |
-
"temperature": temperature,
|
170 |
-
"messages": history_claude_format
|
171 |
-
})
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
return response_body.get('content')[0].get('text')
|
178 |
-
|
179 |
-
class Mistral(LLM):
|
180 |
-
@staticmethod
|
181 |
-
def generate_body(message, history, system_prompt, temperature, max_tokens):
|
182 |
-
prompt = "<s>"
|
183 |
-
for human, assi in history:
|
184 |
-
if human:
|
185 |
-
if type(human) is tuple:
|
186 |
-
prompt += f"[INST] {encode_file(human[0])} [/INST]"
|
187 |
-
else:
|
188 |
-
prompt += f"[INST] {human} [/INST]"
|
189 |
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
192 |
|
193 |
-
|
194 |
-
|
|
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
"temperature": temperature,
|
211 |
-
})
|
212 |
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import fitz
|
8 |
from PIL import Image
|
9 |
import io
|
10 |
+
import boto3
|
11 |
+
from botocore.config import Config
|
12 |
+
import re
|
13 |
|
14 |
# constants
|
15 |
log_to_console = False
|
16 |
+
use_document_message_type = False # AWS document message type usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
LLMClass = TypeVar('LLMClass', bound='LLM')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
class LLM:
|
21 |
@staticmethod
|
22 |
def create_llm(model: str) -> Type[LLMClass]:
|
23 |
+
return LLM()
|
24 |
+
|
25 |
+
def generate_body(self, message, history):
|
26 |
+
messages = []
|
27 |
+
|
28 |
+
# AWS API requires strict user, assi, user, ... sequence
|
29 |
+
lastTypeHuman = False
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
for human, assi in history:
|
32 |
if human:
|
33 |
+
if lastTypeHuman:
|
34 |
+
last_msg = messages.pop()
|
35 |
+
user_msg_parts = last_msg["content"]
|
36 |
else:
|
|
|
|
|
|
|
|
|
|
|
37 |
user_msg_parts = []
|
38 |
|
39 |
+
if isinstance(human, tuple):
|
40 |
+
user_msg_parts.extend(self._process_file(human[0]))
|
41 |
+
else:
|
42 |
+
user_msg_parts.extend([{"text": human}])
|
43 |
|
44 |
+
messages.append({"role": "user", "content": user_msg_parts})
|
45 |
+
lastTypeHuman = True
|
46 |
+
if assi:
|
47 |
+
messages.append({"role": "assistant", "content": [{"text": assi}]})
|
48 |
+
lastTypeHuman = False
|
49 |
+
|
50 |
user_msg_parts = []
|
51 |
+
if message.text:
|
52 |
+
user_msg_parts.append({"text": message.text})
|
53 |
+
if message.files:
|
54 |
+
for file in message.files:
|
55 |
+
user_msg_parts.extend(self._process_file(file.path))
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
if user_msg_parts:
|
58 |
+
messages.append({"role": "user", "content": user_msg_parts})
|
59 |
+
|
60 |
+
return messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def _process_file(self, file_path):
|
63 |
+
if use_document_message_type and self._is_supported_document_type(file_path):
|
64 |
+
return [self._create_document_message(file_path)]
|
65 |
+
else:
|
66 |
+
return self._encode_file(file_path)
|
67 |
|
68 |
+
def _is_supported_document_type(self, file_path):
|
69 |
+
supported_extensions = ['.pdf', '.csv', '.doc', '.docx', '.xls', '.xlsx', '.html', '.txt', '.md']
|
70 |
+
return os.path.splitext(file_path)[1].lower() in supported_extensions
|
71 |
|
72 |
+
def _create_document_message(self, file_path):
|
73 |
+
with open(file_path, 'rb') as file:
|
74 |
+
file_content = file.read()
|
75 |
+
|
76 |
+
file_name = re.sub(r'[^a-zA-Z0-9\s\-\(\)\[\]]', '', os.path.basename(file_path))[:200].strip() or "unnamed_file"
|
77 |
+
file_extension = os.path.splitext(file_path)[1][1:] # Remove the dot
|
78 |
+
|
79 |
+
return {
|
80 |
+
"document": {
|
81 |
+
"name": file_name,
|
82 |
+
"format": file_extension,
|
83 |
+
"source": {
|
84 |
+
"bytes": file_content
|
85 |
+
}
|
86 |
+
}
|
87 |
+
}
|
88 |
+
|
89 |
+
def _encode_file(self, fn: str) -> list:
|
90 |
+
if fn.endswith(".docx"):
|
91 |
+
return [{"text": process_docx(fn)}]
|
92 |
+
elif fn.endswith(".pdf"):
|
93 |
+
return self._process_pdf_img(fn)
|
94 |
+
else:
|
95 |
+
with open(fn, mode="rb") as f:
|
96 |
+
content = f.read()
|
97 |
+
|
98 |
+
if isinstance(content, bytes):
|
99 |
+
try:
|
100 |
+
# try to add as image
|
101 |
+
image_data = self._encode_image(content)
|
102 |
+
return [{"image": image_data}]
|
103 |
+
except:
|
104 |
+
# not an image, try text
|
105 |
+
content = content.decode('utf-8', 'replace')
|
106 |
+
else:
|
107 |
+
content = str(content)
|
108 |
|
109 |
+
fname = os.path.basename(fn)
|
110 |
+
return [{"text": f"``` {fname}\n{content}\n```"}]
|
111 |
|
112 |
+
def _process_pdf_img(self, pdf_fn: str):
|
113 |
+
pdf = fitz.open(pdf_fn)
|
114 |
+
message_parts = []
|
|
|
|
|
115 |
|
116 |
+
for page in pdf.pages():
|
117 |
+
# Create a transformation matrix for rendering at the calculated scale
|
118 |
+
mat = fitz.Matrix(0.6, 0.6)
|
119 |
+
|
120 |
+
# Render the page to a pixmap
|
121 |
+
pix = page.get_pixmap(matrix=mat, alpha=False)
|
122 |
+
|
123 |
+
# Convert pixmap to PIL Image
|
124 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
125 |
+
|
126 |
+
# Convert PIL Image to bytes
|
127 |
+
img_byte_arr = io.BytesIO()
|
128 |
+
img.save(img_byte_arr, format='PNG')
|
129 |
+
img_byte_arr = img_byte_arr.getvalue()
|
130 |
+
|
131 |
+
# Append the message parts
|
132 |
+
message_parts.append({"text": f"Page {page.number} of file '{pdf_fn}'"})
|
133 |
+
message_parts.append({"image": {
|
134 |
+
"format": "png",
|
135 |
+
"source": {"bytes": img_byte_arr}
|
136 |
+
}})
|
137 |
+
|
138 |
+
pdf.close()
|
139 |
+
|
140 |
+
return message_parts
|
141 |
+
|
142 |
+
def _encode_image(self, image_data):
|
143 |
+
# Get the first few bytes of the image data.
|
144 |
+
magic_number = image_data[:4]
|
145 |
+
|
146 |
+
# Check the magic number to determine the image type.
|
147 |
+
if magic_number.startswith(b'\x89PNG'):
|
148 |
+
image_type = 'png'
|
149 |
+
elif magic_number.startswith(b'\xFF\xD8'):
|
150 |
+
image_type = 'jpeg'
|
151 |
+
elif magic_number.startswith(b'GIF89a'):
|
152 |
+
image_type = 'gif'
|
153 |
+
elif magic_number.startswith(b'RIFF'):
|
154 |
+
if image_data[8:12] == b'WEBP':
|
155 |
+
image_type = 'webp'
|
156 |
+
else:
|
157 |
+
# Unknown image type.
|
158 |
+
raise Exception("Unknown image type")
|
159 |
+
else:
|
160 |
+
# Unknown image type.
|
161 |
+
raise Exception("Unknown image type")
|
162 |
|
163 |
+
return {
|
164 |
+
"format": image_type,
|
165 |
+
"source": {"bytes": image_data}
|
166 |
+
}
|
167 |
+
|
168 |
+
def read_response(self, response_stream):
|
169 |
+
for event in response_stream:
|
170 |
+
if 'contentBlockDelta' in event:
|
171 |
+
yield event['contentBlockDelta']['delta']['text']
|
172 |
+
if 'messageStop' in event:
|
173 |
+
if log_to_console:
|
174 |
+
print(f"\nStop reason: {event['messageStop']['stopReason']}")
|
175 |
+
if 'metadata' in event:
|
176 |
+
metadata = event['metadata']
|
177 |
+
if 'usage' in metadata and log_to_console:
|
178 |
+
print("\nToken usage:")
|
179 |
+
print(f"Input tokens: {metadata['usage']['inputTokens']}")
|
180 |
+
print(f"Output tokens: {metadata['usage']['outputTokens']}")
|
181 |
+
print(f"Total tokens: {metadata['usage']['totalTokens']}")
|