Get the json content from image with naver-clova-ix/donut-base-finetuned-docvqa
I am using "naver-clova-ix/donut-base-finetuned-docvqa" model and want to print the full content of the result json after it reads the image without invoking any prompts or user input. I just want it to parse the image and give me the full json content. How can I achieve that, please help. I am using below code:
import re
import gradio as gr
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def process_document(image, question):
prepare encoder inputs
pixel_values = processor(image, return_tensors="pt").pixel_values
print(pixel_values)
prepare decoder inputs
task_prompt = "{user_input}"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
print(decoder_input_ids)
generate answer
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
json_content = processor.token2json(sequence)
print(json_content) # Print the full JSON content
return json_content
#return processor.token2json(sequence)
description = "Gradio Demo for Donut, an instance of VisionEncoderDecoderModel fine-tuned on DocVQA (document visual question answering). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "
Donut: OCR-free Document Understanding Transformer | Github Repo
"
demo = gr.Interface(
fn=process_document,
inputs=["image", "text"],
outputs="json",
title="Demo: Donut ๐ฉ for DocVQA",
description=description,
article=article,
enable_queue=True,
examples=[["example_1.png", "When is the coffee break?"], ["example_2.jpeg", "What's the population of Stoddard?"]],
cache_examples=False)
demo.launch()