Spaces:
Runtime error
Runtime error
revise readme and docs
#1
by
chtlp
- opened
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🌍
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
|
|
1 |
---
|
2 |
+
title: Protein Structure Modeling
|
3 |
emoji: 🌍
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
app.py
CHANGED
@@ -275,7 +275,7 @@ messages = [
|
|
275 |
|
276 |
We have 120k proteins features stored in our database.
|
277 |
|
278 |
-
The app uses
|
279 |
using vector search.
|
280 |
"""
|
281 |
]
|
@@ -308,10 +308,14 @@ if 'xq' not in st.session_state:
|
|
308 |
st.title("Evolutionary Scale Modeling")
|
309 |
start = [st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty()]
|
310 |
start[0].info(msg)
|
311 |
-
|
|
|
|
|
|
|
|
|
312 |
|
313 |
st.session_state.db_name_ref = 'default.esm_protein'
|
314 |
-
if option ==
|
315 |
sequence = st.text_input('protein sequence', '')
|
316 |
if st.button('Cas9 Enzyme'):
|
317 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
@@ -327,7 +331,7 @@ if 'xq' not in st.session_state:
|
|
327 |
This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners.
|
328 |
(Rao et al. 2020) The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.""")
|
329 |
st.session_state['xq'] = model
|
330 |
-
elif option ==
|
331 |
sequence = st.text_input('protein sequence', '')
|
332 |
st.write('Try an example:')
|
333 |
if st.button('Cas9 Enzyme'):
|
@@ -353,7 +357,7 @@ if 'xq' not in st.session_state:
|
|
353 |
|
354 |
start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
|
355 |
st.session_state['xq'] = model
|
356 |
-
elif option ==
|
357 |
st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
|
358 |
sequence = st.text_input('protein sequence', '')
|
359 |
st.write('Try an example:')
|
@@ -362,7 +366,7 @@ if 'xq' not in st.session_state:
|
|
362 |
elif st.button('PETase'):
|
363 |
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
|
364 |
|
365 |
-
elif option ==
|
366 |
id_PDB = st.text_input('enter PDB ID', '')
|
367 |
residues_marker = st.text_input('residues class', '')
|
368 |
if residues_marker:
|
|
|
275 |
|
276 |
We have 120k proteins features stored in our database.
|
277 |
|
278 |
+
The app uses MyScale to store and query protein sequence
|
279 |
using vector search.
|
280 |
"""
|
281 |
]
|
|
|
308 |
st.title("Evolutionary Scale Modeling")
|
309 |
start = [st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty()]
|
310 |
start[0].info(msg)
|
311 |
+
function_list = ('self-contact prediction',
|
312 |
+
'search the database for similar proteins',
|
313 |
+
'activity prediction with similar proteins',
|
314 |
+
'PDB viewer')
|
315 |
+
option = st.selectbox('Application options', function_list)
|
316 |
|
317 |
st.session_state.db_name_ref = 'default.esm_protein'
|
318 |
+
if option == function_list[0]:
|
319 |
sequence = st.text_input('protein sequence', '')
|
320 |
if st.button('Cas9 Enzyme'):
|
321 |
sequence = 'GSGHMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRILYLQEIFSNEMAKV'
|
|
|
331 |
This methodology is based on ICLR 2021 paper, Transformer protein language models are unsupervised structure learners.
|
332 |
(Rao et al. 2020) The MSA Transformer (ESM-MSA-1) takes a multiple sequence alignment (MSA) as input, and uses the tied row self-attention maps in the same way.""")
|
333 |
st.session_state['xq'] = model
|
334 |
+
elif option == function_list[1]:
|
335 |
sequence = st.text_input('protein sequence', '')
|
336 |
st.write('Try an example:')
|
337 |
if st.button('Cas9 Enzyme'):
|
|
|
357 |
|
358 |
start[2] = st.pyplot(visualize_3D_Coordinates(result_temp_coords).figure)
|
359 |
st.session_state['xq'] = model
|
360 |
+
elif option == function_list[2]:
|
361 |
st.text('we predict the biological activity of mutations of a protein, using fixed embeddings from ESM.')
|
362 |
sequence = st.text_input('protein sequence', '')
|
363 |
st.write('Try an example:')
|
|
|
366 |
elif st.button('PETase'):
|
367 |
sequence = 'MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ'
|
368 |
|
369 |
+
elif option == function_list[3]:
|
370 |
id_PDB = st.text_input('enter PDB ID', '')
|
371 |
residues_marker = st.text_input('residues class', '')
|
372 |
if residues_marker:
|