aipro / app.py
mxrkai's picture
Update app.py
366eaaf verified
import json
import sseclient
import requests
from flask import Flask, request, Response, stream_with_context
import random
app = Flask(__name__)
def generate_random_ip():
return f"{random.randint(1,255)}.{random.randint(0,255)}.{random.randint(0,255)}.{random.randint(0,255)}"
def generate_user_agent():
os_list = ['Windows NT 10.0', 'Windows NT 6.1', 'Mac OS X 10_15_7', 'Ubuntu', 'Linux x86_64']
browser_list = ['Chrome', 'Firefox', 'Safari', 'Edge']
chrome_version = f"{random.randint(70, 126)}.0.{random.randint(1000, 9999)}.{random.randint(100, 999)}"
firefox_version = f"{random.randint(70, 100)}.0"
safari_version = f"{random.randint(600, 615)}.{random.randint(1, 9)}.{random.randint(1, 9)}"
edge_version = f"{random.randint(80, 100)}.0.{random.randint(1000, 9999)}.{random.randint(100, 999)}"
os = random.choice(os_list)
browser = random.choice(browser_list)
if browser == 'Chrome':
return f"Mozilla/5.0 ({os}) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/{chrome_version} Safari/537.36"
elif browser == 'Firefox':
return f"Mozilla/5.0 ({os}; rv:{firefox_version}) Gecko/20100101 Firefox/{firefox_version}"
elif browser == 'Safari':
return f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/{safari_version} (KHTML, like Gecko) Version/{safari_version.split('.')[0]}.1.2 Safari/{safari_version}"
elif browser == 'Edge':
return f"Mozilla/5.0 ({os}) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/{edge_version} Safari/537.36 Edg/{edge_version}"
def format_openai_response(content, finish_reason=None):
return {
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1677652288,
"model": "gpt-4o",
"choices": [{
"delta": {"content": content} if content else {"finish_reason": finish_reason},
"index": 0,
"finish_reason": finish_reason
}]
}
@app.route('/ok/v1/chat/completions', methods=['POST'])
def chat_completions():
data = request.json
messages = data.get('messages', [])
stream = data.get('stream', False)
if not messages:
return {"error": "No messages provided"}, 400
model = data.get('model', 'gpt-4o')
if model.startswith('gpt'):
endpoint = "openAI"
original_api_url = 'https://chatpro.ai-pro.org/api/ask/openAI'
elif model.startswith('claude'):
endpoint = "claude"
original_api_url = 'https://chatpro.ai-pro.org/api/ask/claude'
else:
return {"error": "Unsupported model"}, 400
headers = {
'content-type': 'application/json',
'X-Forwarded-For': generate_random_ip(),
'origin': 'https://chatpro.ai-pro.org',
'user-agent': generate_user_agent()
}
def generate():
nonlocal messages
full_response = ""
while True:
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
conversation += "\nPlease follow and reply to the user’s recent messages and avoid answers that summarize the conversation history."
payload = {
"text": conversation,
"endpoint": endpoint,
"model": model
}
response = requests.post(original_api_url, headers=headers, json=payload, stream=True)
client = sseclient.SSEClient(response)
for event in client.events():
if event.data.startswith('{"text":'):
data = json.loads(event.data)
new_content = data['text'][len(full_response):]
full_response = data['text']
if new_content:
yield f"data: {json.dumps(format_openai_response(new_content))}\n\n"
elif '"final":true' in event.data:
final_data = json.loads(event.data)
response_message = final_data.get('responseMessage', {})
finish_reason = response_message.get('finish_reason', 'stop')
if finish_reason == 'length':
messages.append({"role": "assistant", "content": full_response})
messages.append({"role": "user", "content": "Please continue your output and do not repeat the previous content"})
break # Jump out of the current loop and continue with the next request
else:
# End normally, sending the final content (if any)
last_content = response_message.get('text', '')
if last_content and last_content != full_response:
yield f"data: {json.dumps(format_openai_response(last_content[len(full_response):]))}\n\n"
yield f"data: {json.dumps(format_openai_response('', finish_reason))}\n\n"
yield "data: [DONE]\n\n"
return # completely end generation
# If it ends due to multiple length limits, send a stop signal
yield f"data: {json.dumps(format_openai_response('', 'stop'))}\n\n"
yield "data: [DONE]\n\n"
if stream:
return Response(stream_with_context(generate()), content_type='text/event-stream')
else:
full_response = ""
finish_reason = "stop"
for chunk in generate():
if chunk.startswith("data: ") and not chunk.strip() == "data: [DONE]":
response_data = json.loads(chunk[6:])
if 'choices' in response_data and response_data['choices']:
delta = response_data['choices'][0].get('delta', {})
if 'content' in delta:
full_response += delta['content']
if 'finish_reason' in delta:
finish_reason = delta['finish_reason']
return {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": full_response
},
"finish_reason": finish_reason
}],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}
if __name__ == '__main__':
app.run(debug=True, port=5000)