File size: 6,674 Bytes
bd06cc8
 
e100b79
bd06cc8
 
e100b79
bd06cc8
e100b79
 
 
 
395ec56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd06cc8
 
 
 
 
 
 
 
 
 
 
e100b79
bd06cc8
366eaaf
bd06cc8
 
 
 
 
 
 
e100b79
bd06cc8
fed1648
364bda2
 
c2b4e5c
364bda2
 
c2b4e5c
364bda2
 
fed1648
bd06cc8
 
 
 
bf3f697
bd06cc8
fed1648
bd06cc8
fed1648
 
 
 
11a3d84
bd06cc8
fed1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ba3af
 
 
dd193a1
fed1648
11a3d84
 
fed1648
11a3d84
b3ba3af
 
 
 
fed1648
 
11a3d84
e100b79
11a3d84
dd193a1
 
837e868
bd06cc8
 
e100b79
bd06cc8
fed1648
bd06cc8
 
 
 
 
 
 
fed1648
 
bd06cc8
 
 
 
 
 
 
 
 
 
 
 
fed1648
bd06cc8
 
 
 
 
e100b79
bd06cc8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import json
import sseclient
import requests
from flask import Flask, request, Response, stream_with_context
import random

app = Flask(__name__)

def generate_random_ip():
    return f"{random.randint(1,255)}.{random.randint(0,255)}.{random.randint(0,255)}.{random.randint(0,255)}"

def generate_user_agent():
    os_list = ['Windows NT 10.0', 'Windows NT 6.1', 'Mac OS X 10_15_7', 'Ubuntu', 'Linux x86_64']
    browser_list = ['Chrome', 'Firefox', 'Safari', 'Edge']
    chrome_version = f"{random.randint(70, 126)}.0.{random.randint(1000, 9999)}.{random.randint(100, 999)}"
    firefox_version = f"{random.randint(70, 100)}.0"
    safari_version = f"{random.randint(600, 615)}.{random.randint(1, 9)}.{random.randint(1, 9)}"
    edge_version = f"{random.randint(80, 100)}.0.{random.randint(1000, 9999)}.{random.randint(100, 999)}"

    os = random.choice(os_list)
    browser = random.choice(browser_list)

    if browser == 'Chrome':
        return f"Mozilla/5.0 ({os}) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/{chrome_version} Safari/537.36"
    elif browser == 'Firefox':
        return f"Mozilla/5.0 ({os}; rv:{firefox_version}) Gecko/20100101 Firefox/{firefox_version}"
    elif browser == 'Safari':
        return f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/{safari_version} (KHTML, like Gecko) Version/{safari_version.split('.')[0]}.1.2 Safari/{safari_version}"
    elif browser == 'Edge':
        return f"Mozilla/5.0 ({os}) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/{edge_version} Safari/537.36 Edg/{edge_version}"

def format_openai_response(content, finish_reason=None):
    return {
        "id": "chatcmpl-123",
        "object": "chat.completion.chunk",
        "created": 1677652288,
        "model": "gpt-4o",
        "choices": [{
            "delta": {"content": content} if content else {"finish_reason": finish_reason},
            "index": 0,
            "finish_reason": finish_reason
        }]
    }

@app.route('/ok/v1/chat/completions', methods=['POST'])
def chat_completions():
    data = request.json
    messages = data.get('messages', [])
    stream = data.get('stream', False)
    
    if not messages:
        return {"error": "No messages provided"}, 400
    
    model = data.get('model', 'gpt-4o')

    if model.startswith('gpt'):
        endpoint = "openAI"
        original_api_url = 'https://chatpro.ai-pro.org/api/ask/openAI'
    elif model.startswith('claude'):
        endpoint = "claude"
        original_api_url = 'https://chatpro.ai-pro.org/api/ask/claude'
    else:
        return {"error": "Unsupported model"}, 400

    headers = {
        'content-type': 'application/json',
        'X-Forwarded-For': generate_random_ip(),
        'origin': 'https://chatpro.ai-pro.org',
        'user-agent': generate_user_agent()
    }

    def generate():
        nonlocal messages
        full_response = ""
        while True:
            conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
            conversation += "\nPlease follow and reply to the user’s recent messages and avoid answers that summarize the conversation history."
            
            payload = {
                "text": conversation,
                "endpoint": endpoint,
                "model": model
            }
            
            response = requests.post(original_api_url, headers=headers, json=payload, stream=True)
            client = sseclient.SSEClient(response)
            
            for event in client.events():
                if event.data.startswith('{"text":'):
                    data = json.loads(event.data)
                    new_content = data['text'][len(full_response):]
                    full_response = data['text']
                    
                    if new_content:
                        yield f"data: {json.dumps(format_openai_response(new_content))}\n\n"
                
                elif '"final":true' in event.data:
                    final_data = json.loads(event.data)
                    response_message = final_data.get('responseMessage', {})
                    finish_reason = response_message.get('finish_reason', 'stop')
                    
                    if finish_reason == 'length':
                        messages.append({"role": "assistant", "content": full_response})
                        messages.append({"role": "user", "content": "Please continue your output and do not repeat the previous content"})
                        break  # Jump out of the current loop and continue with the next request
                    else:
                        # End normally, sending the final content (if any)
                        last_content = response_message.get('text', '')
                        if last_content and last_content != full_response:
                            yield f"data: {json.dumps(format_openai_response(last_content[len(full_response):]))}\n\n"
                        
                        yield f"data: {json.dumps(format_openai_response('', finish_reason))}\n\n"
                        yield "data: [DONE]\n\n"
                        return  # completely end generation

        # If it ends due to multiple length limits, send a stop signal
        yield f"data: {json.dumps(format_openai_response('', 'stop'))}\n\n"
        yield "data: [DONE]\n\n"

    if stream:
        return Response(stream_with_context(generate()), content_type='text/event-stream')
    else:
        full_response = ""
        finish_reason = "stop"
        for chunk in generate():
            if chunk.startswith("data: ") and not chunk.strip() == "data: [DONE]":
                response_data = json.loads(chunk[6:])
                if 'choices' in response_data and response_data['choices']:
                    delta = response_data['choices'][0].get('delta', {})
                    if 'content' in delta:
                        full_response += delta['content']
                    if 'finish_reason' in delta:
                        finish_reason = delta['finish_reason']

        return {
            "id": "chatcmpl-123",
            "object": "chat.completion",
            "created": 1677652288,
            "model": model,
            "choices": [{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": full_response
                },
                "finish_reason": finish_reason
            }],
            "usage": {
                "prompt_tokens": 0,
                "completion_tokens": 0,
                "total_tokens": 0
            }
        }

if __name__ == '__main__':
    app.run(debug=True, port=5000)