File size: 6,674 Bytes
bd06cc8 e100b79 bd06cc8 e100b79 bd06cc8 e100b79 395ec56 bd06cc8 e100b79 bd06cc8 366eaaf bd06cc8 e100b79 bd06cc8 fed1648 364bda2 c2b4e5c 364bda2 c2b4e5c 364bda2 fed1648 bd06cc8 bf3f697 bd06cc8 fed1648 bd06cc8 fed1648 11a3d84 bd06cc8 fed1648 b3ba3af dd193a1 fed1648 11a3d84 fed1648 11a3d84 b3ba3af fed1648 11a3d84 e100b79 11a3d84 dd193a1 837e868 bd06cc8 e100b79 bd06cc8 fed1648 bd06cc8 fed1648 bd06cc8 fed1648 bd06cc8 e100b79 bd06cc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import json
import sseclient
import requests
from flask import Flask, request, Response, stream_with_context
import random
app = Flask(__name__)
def generate_random_ip():
return f"{random.randint(1,255)}.{random.randint(0,255)}.{random.randint(0,255)}.{random.randint(0,255)}"
def generate_user_agent():
os_list = ['Windows NT 10.0', 'Windows NT 6.1', 'Mac OS X 10_15_7', 'Ubuntu', 'Linux x86_64']
browser_list = ['Chrome', 'Firefox', 'Safari', 'Edge']
chrome_version = f"{random.randint(70, 126)}.0.{random.randint(1000, 9999)}.{random.randint(100, 999)}"
firefox_version = f"{random.randint(70, 100)}.0"
safari_version = f"{random.randint(600, 615)}.{random.randint(1, 9)}.{random.randint(1, 9)}"
edge_version = f"{random.randint(80, 100)}.0.{random.randint(1000, 9999)}.{random.randint(100, 999)}"
os = random.choice(os_list)
browser = random.choice(browser_list)
if browser == 'Chrome':
return f"Mozilla/5.0 ({os}) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/{chrome_version} Safari/537.36"
elif browser == 'Firefox':
return f"Mozilla/5.0 ({os}; rv:{firefox_version}) Gecko/20100101 Firefox/{firefox_version}"
elif browser == 'Safari':
return f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/{safari_version} (KHTML, like Gecko) Version/{safari_version.split('.')[0]}.1.2 Safari/{safari_version}"
elif browser == 'Edge':
return f"Mozilla/5.0 ({os}) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/{edge_version} Safari/537.36 Edg/{edge_version}"
def format_openai_response(content, finish_reason=None):
return {
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1677652288,
"model": "gpt-4o",
"choices": [{
"delta": {"content": content} if content else {"finish_reason": finish_reason},
"index": 0,
"finish_reason": finish_reason
}]
}
@app.route('/ok/v1/chat/completions', methods=['POST'])
def chat_completions():
data = request.json
messages = data.get('messages', [])
stream = data.get('stream', False)
if not messages:
return {"error": "No messages provided"}, 400
model = data.get('model', 'gpt-4o')
if model.startswith('gpt'):
endpoint = "openAI"
original_api_url = 'https://chatpro.ai-pro.org/api/ask/openAI'
elif model.startswith('claude'):
endpoint = "claude"
original_api_url = 'https://chatpro.ai-pro.org/api/ask/claude'
else:
return {"error": "Unsupported model"}, 400
headers = {
'content-type': 'application/json',
'X-Forwarded-For': generate_random_ip(),
'origin': 'https://chatpro.ai-pro.org',
'user-agent': generate_user_agent()
}
def generate():
nonlocal messages
full_response = ""
while True:
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
conversation += "\nPlease follow and reply to the user’s recent messages and avoid answers that summarize the conversation history."
payload = {
"text": conversation,
"endpoint": endpoint,
"model": model
}
response = requests.post(original_api_url, headers=headers, json=payload, stream=True)
client = sseclient.SSEClient(response)
for event in client.events():
if event.data.startswith('{"text":'):
data = json.loads(event.data)
new_content = data['text'][len(full_response):]
full_response = data['text']
if new_content:
yield f"data: {json.dumps(format_openai_response(new_content))}\n\n"
elif '"final":true' in event.data:
final_data = json.loads(event.data)
response_message = final_data.get('responseMessage', {})
finish_reason = response_message.get('finish_reason', 'stop')
if finish_reason == 'length':
messages.append({"role": "assistant", "content": full_response})
messages.append({"role": "user", "content": "Please continue your output and do not repeat the previous content"})
break # Jump out of the current loop and continue with the next request
else:
# End normally, sending the final content (if any)
last_content = response_message.get('text', '')
if last_content and last_content != full_response:
yield f"data: {json.dumps(format_openai_response(last_content[len(full_response):]))}\n\n"
yield f"data: {json.dumps(format_openai_response('', finish_reason))}\n\n"
yield "data: [DONE]\n\n"
return # completely end generation
# If it ends due to multiple length limits, send a stop signal
yield f"data: {json.dumps(format_openai_response('', 'stop'))}\n\n"
yield "data: [DONE]\n\n"
if stream:
return Response(stream_with_context(generate()), content_type='text/event-stream')
else:
full_response = ""
finish_reason = "stop"
for chunk in generate():
if chunk.startswith("data: ") and not chunk.strip() == "data: [DONE]":
response_data = json.loads(chunk[6:])
if 'choices' in response_data and response_data['choices']:
delta = response_data['choices'][0].get('delta', {})
if 'content' in delta:
full_response += delta['content']
if 'finish_reason' in delta:
finish_reason = delta['finish_reason']
return {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": full_response
},
"finish_reason": finish_reason
}],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}
if __name__ == '__main__':
app.run(debug=True, port=5000) |