Spaces:
Configuration error
Configuration error
File size: 4,786 Bytes
8af5c8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import io
import os
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
from langchain.tools import StructuredTool, Tool
from PIL import Image
from stability_sdk import client
import chainlit as cl
os.environ["STABILITY_HOST"] = "grpc.stability.ai:443"
def get_image_name():
image_count = cl.user_session.get("image_count")
if image_count is None:
image_count = 0
else:
image_count += 1
cl.user_session.set("image_count", image_count)
return f"image-{image_count}"
def _generate_image(prompt: str, init_image=None):
# Set up our connection to the API.
stability_api = client.StabilityInference(
key=os.environ["STABILITY_KEY"], # API Key reference.
verbose=True, # Print debug messages.
engine="stable-diffusion-xl-beta-v2-2-2", # Set the engine to use for generation.
# Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0
# stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-diffusion-xl-beta-v2-2-2 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)
start_schedule = 0.8 if init_image else 1
cl_chat_settings = cl.user_session.get("chat_settings")
# Set up our initial generation parameters.
answers = stability_api.generate(
prompt=prompt,
init_image=init_image,
start_schedule=start_schedule,
seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
# Note: This isn't quite the case for CLIP Guided generations, which we tackle in the CLIP Guidance documentation.
steps=int(cl_chat_settings["SAI_Steps"]), # Amount of inference steps performed on image generation. Defaults to 30.
cfg_scale=cl_chat_settings["SAI_Cfg_Scale"], # Influences how strongly your generation is guided to match your prompt.
# Setting this value higher increases the strength in which it tries to match your prompt.
# Defaults to 7.0 if not specified.
width=int(cl_chat_settings["SAI_Width"]), # Generation width, defaults to 512 if not included.
height=int(cl_chat_settings["SAI_Height"]), # Generation height, defaults to 512 if not included.
samples=1, # Number of images to generate, defaults to 1 if not included.
sampler=generation.SAMPLER_K_EULER # Choose which sampler we want to denoise our generation with.
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m, k_dpmpp_sde)
)
# Set up our warning to print to the console if the adult content classifier is tripped.
# If adult content classifier is not tripped, save generated images.
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
raise ValueError(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again."
)
if artifact.type == generation.ARTIFACT_IMAGE:
name = get_image_name()
cl.user_session.set(name, artifact.binary)
cl.user_session.set("generated_image", name)
return name
else:
raise ValueError(
f"Your request did not generate an image. Please modify the prompt and try again. Finish reason: {artifact.finish_reason}"
)
def generate_image(prompt: str):
image_name = _generate_image(prompt)
return f"Here is {image_name}."
def edit_image(init_image_name: str, prompt: str):
init_image_bytes = cl.user_session.get(init_image_name)
if init_image_bytes is None:
raise ValueError(f"Could not find image `{init_image_name}`.")
init_image = Image.open(io.BytesIO(init_image_bytes))
image_name = _generate_image(prompt, init_image)
return f"Here is {image_name} based on {init_image_name}."
generate_image_tool = Tool.from_function(
func=generate_image,
name="GenerateImage",
description="Useful to create an image from a text prompt.",
return_direct=True,
)
edit_image_tool = StructuredTool.from_function(
func=edit_image,
name="EditImage",
description="Useful to edit an image with a prompt. Works well with commands such as 'replace', 'add', 'change', 'remove'.",
return_direct=True,
)
|