Spaces:
Runtime error
Runtime error
Add live previews (now for realz) (#18)
Browse files- Add live previews (now for realz) (2ed4418f4c92b7cc2acc65a4b655a3a0c28eadd4)
- Update app.py (aaff7099c16d675defc700eb3004d4015af257a0)
- Update loras.json (0a8b917725e831072aefd745f37bcea1888d4a84)
- app.py +28 -12
- live_preview_helpers.py +6 -5
- loras.json +37 -4
app.py
CHANGED
@@ -5,7 +5,9 @@ import logging
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
-
from diffusers import DiffusionPipeline
|
|
|
|
|
9 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
10 |
import copy
|
11 |
import random
|
@@ -16,11 +18,18 @@ with open('loras.json', 'r') as f:
|
|
16 |
loras = json.load(f)
|
17 |
|
18 |
# Initialize the base model
|
|
|
|
|
19 |
base_model = "black-forest-labs/FLUX.1-dev"
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
MAX_SEED = 2**32-1
|
23 |
|
|
|
|
|
24 |
class calculateDuration:
|
25 |
def __init__(self, activity_name=""):
|
26 |
self.activity_name = activity_name
|
@@ -61,10 +70,9 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
61 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
62 |
pipe.to("cuda")
|
63 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
64 |
-
|
65 |
with calculateDuration("Generating image"):
|
66 |
# Generate image
|
67 |
-
|
68 |
prompt=prompt_mash,
|
69 |
num_inference_steps=steps,
|
70 |
guidance_scale=cfg_scale,
|
@@ -72,13 +80,14 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
72 |
height=height,
|
73 |
generator=generator,
|
74 |
joint_attention_kwargs={"scale": lora_scale},
|
75 |
-
|
76 |
-
|
|
|
|
|
77 |
|
78 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
79 |
if selected_index is None:
|
80 |
raise gr.Error("You must select a LoRA before proceeding.")
|
81 |
-
|
82 |
selected_lora = loras[selected_index]
|
83 |
lora_path = selected_lora["repo"]
|
84 |
trigger_word = selected_lora["trigger_word"]
|
@@ -92,24 +101,31 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
92 |
prompt_mash = f"{trigger_word} {prompt}"
|
93 |
else:
|
94 |
prompt_mash = prompt
|
|
|
95 |
# Load LoRA weights
|
96 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
97 |
if "weights" in selected_lora:
|
98 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
99 |
-
#pipe.fuse_lora()
|
100 |
else:
|
101 |
pipe.load_lora_weights(lora_path)
|
102 |
-
|
103 |
# Set random seed for reproducibility
|
104 |
with calculateDuration("Randomizing seed"):
|
105 |
if randomize_seed:
|
106 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
109 |
pipe.to("cpu")
|
110 |
-
#pipe.unfuse_lora()
|
111 |
pipe.unload_lora_weights()
|
112 |
-
|
|
|
113 |
|
114 |
def get_huggingface_safetensors(link):
|
115 |
split_link = link.split("/")
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
9 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
+
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
12 |
import copy
|
13 |
import random
|
|
|
18 |
loras = json.load(f)
|
19 |
|
20 |
# Initialize the base model
|
21 |
+
dtype = torch.bfloat16
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
base_model = "black-forest-labs/FLUX.1-dev"
|
24 |
+
|
25 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
26 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
27 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
28 |
|
29 |
MAX_SEED = 2**32-1
|
30 |
|
31 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
32 |
+
|
33 |
class calculateDuration:
|
34 |
def __init__(self, activity_name=""):
|
35 |
self.activity_name = activity_name
|
|
|
70 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
71 |
pipe.to("cuda")
|
72 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
73 |
with calculateDuration("Generating image"):
|
74 |
# Generate image
|
75 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
76 |
prompt=prompt_mash,
|
77 |
num_inference_steps=steps,
|
78 |
guidance_scale=cfg_scale,
|
|
|
80 |
height=height,
|
81 |
generator=generator,
|
82 |
joint_attention_kwargs={"scale": lora_scale},
|
83 |
+
output_type="pil",
|
84 |
+
good_vae=good_vae,
|
85 |
+
):
|
86 |
+
yield img
|
87 |
|
88 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
89 |
if selected_index is None:
|
90 |
raise gr.Error("You must select a LoRA before proceeding.")
|
|
|
91 |
selected_lora = loras[selected_index]
|
92 |
lora_path = selected_lora["repo"]
|
93 |
trigger_word = selected_lora["trigger_word"]
|
|
|
101 |
prompt_mash = f"{trigger_word} {prompt}"
|
102 |
else:
|
103 |
prompt_mash = prompt
|
104 |
+
|
105 |
# Load LoRA weights
|
106 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
107 |
if "weights" in selected_lora:
|
108 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
|
|
109 |
else:
|
110 |
pipe.load_lora_weights(lora_path)
|
111 |
+
|
112 |
# Set random seed for reproducibility
|
113 |
with calculateDuration("Randomizing seed"):
|
114 |
if randomize_seed:
|
115 |
seed = random.randint(0, MAX_SEED)
|
116 |
+
|
117 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
118 |
|
119 |
+
# Consume the generator to get the final image
|
120 |
+
final_image = None
|
121 |
+
for image in image_generator:
|
122 |
+
final_image = image
|
123 |
+
yield image, seed # Yield intermediate images and seed
|
124 |
+
|
125 |
pipe.to("cpu")
|
|
|
126 |
pipe.unload_lora_weights()
|
127 |
+
|
128 |
+
return final_image, seed # Return the final image and seed
|
129 |
|
130 |
def get_huggingface_safetensors(link):
|
131 |
split_link = link.split("/")
|
live_preview_helpers.py
CHANGED
@@ -59,6 +59,7 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
|
|
59 |
return_dict: bool = True,
|
60 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
max_sequence_length: int = 512,
|
|
|
62 |
):
|
63 |
height = height or self.default_sample_size * self.vae_scale_factor
|
64 |
width = width or self.default_sample_size * self.vae_scale_factor
|
@@ -156,10 +157,10 @@ def flux_pipe_call_that_returns_an_iterable_of_images(
|
|
156 |
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
157 |
torch.cuda.empty_cache()
|
158 |
|
159 |
-
# Final image
|
160 |
-
latents = self._unpack_latents(latents, height, width,
|
161 |
-
latents = (latents /
|
162 |
-
image =
|
163 |
self.maybe_free_model_hooks()
|
164 |
torch.cuda.empty_cache()
|
165 |
-
|
|
|
59 |
return_dict: bool = True,
|
60 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
max_sequence_length: int = 512,
|
62 |
+
good_vae: Optional[Any] = None,
|
63 |
):
|
64 |
height = height or self.default_sample_size * self.vae_scale_factor
|
65 |
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
157 |
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
158 |
torch.cuda.empty_cache()
|
159 |
|
160 |
+
# Final image using good_vae
|
161 |
+
latents = self._unpack_latents(latents, height, width, good_vae.config.vae_scale_factor)
|
162 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
self.maybe_free_model_hooks()
|
165 |
torch.cuda.empty_cache()
|
166 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
loras.json
CHANGED
@@ -7,10 +7,10 @@
|
|
7 |
"aspect": "portrait"
|
8 |
},
|
9 |
{
|
10 |
-
"image": "https://huggingface.co/alvdansen/
|
11 |
-
"title": "
|
12 |
-
"repo": "alvdansen/
|
13 |
-
"trigger_word": ""
|
14 |
},
|
15 |
{
|
16 |
"image": "https://huggingface.co/AIWarper/RubberCore1920sCartoonStyle/resolve/main/images/Rub_00006_.png",
|
@@ -19,12 +19,32 @@
|
|
19 |
"trigger_word": "RU883R style",
|
20 |
"trigger_position": "prepend"
|
21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
{
|
23 |
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/picture-6-rev1.png?raw=true",
|
24 |
"title": "flux-Realism",
|
25 |
"repo": "XLabs-AI/flux-RealismLora",
|
26 |
"trigger_word": ""
|
27 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
{
|
29 |
"image": "https://huggingface.co/nerijs/animation2k-flux/resolve/main/images/Q8-oVxNnXvZ9HNrgbNpGw_02762aaaba3b47859ee5fe9403a371e3.png",
|
30 |
"title": "animation2k",
|
@@ -49,6 +69,12 @@
|
|
49 |
"repo": "alvdansen/flux-koda",
|
50 |
"trigger_word": "flmft style"
|
51 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
{
|
53 |
"image": "https://pbs.twimg.com/media/GU7NsZPa8AA4Ddl?format=jpg&name=4096x4096",
|
54 |
"title": "Half Illustration",
|
@@ -92,6 +118,13 @@
|
|
92 |
"weights": "anime_lora.safetensors",
|
93 |
"trigger_word": ", anime"
|
94 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
{
|
96 |
"image": "https://huggingface.co/kudzueye/Boreal/resolve/main/images/ComfyUI_00845_.png",
|
97 |
"title": "Boreal",
|
|
|
7 |
"aspect": "portrait"
|
8 |
},
|
9 |
{
|
10 |
+
"image": "https://huggingface.co/alvdansen/softpasty-flux-dev/resolve/main/images/ComfyUI_00814_%20(2).png",
|
11 |
+
"title": "SoftPasty",
|
12 |
+
"repo": "alvdansen/softpasty-flux-dev",
|
13 |
+
"trigger_word": "araminta_illus illustration style"
|
14 |
},
|
15 |
{
|
16 |
"image": "https://huggingface.co/AIWarper/RubberCore1920sCartoonStyle/resolve/main/images/Rub_00006_.png",
|
|
|
19 |
"trigger_word": "RU883R style",
|
20 |
"trigger_position": "prepend"
|
21 |
},
|
22 |
+
{
|
23 |
+
"image": "https://huggingface.co/mgwr/Cine-Aesthetic/resolve/main/images/00030-1333633802.png",
|
24 |
+
"title": "Cine Aesthetic",
|
25 |
+
"repo": "mgwr/Cine-Aesthetic",
|
26 |
+
"trigger_word": "mgwr/cine",
|
27 |
+
"trigger_position": "prepend"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"image": "https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration/resolve/main/images/example3.png",
|
31 |
+
"title": "Blended Realistic Illustration",
|
32 |
+
"repo": "Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration",
|
33 |
+
"trigger_word": "artistic style blends reality and illustration elements"
|
34 |
+
},
|
35 |
{
|
36 |
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/picture-6-rev1.png?raw=true",
|
37 |
"title": "flux-Realism",
|
38 |
"repo": "XLabs-AI/flux-RealismLora",
|
39 |
"trigger_word": ""
|
40 |
},
|
41 |
+
{
|
42 |
+
"image": "https://huggingface.co/multimodalart/vintage-ads-flux/resolve/main/samples/j_XNU6Oe0mgttyvf9uPb3_dc244dd3d6c246b4aff8351444868d66.png",
|
43 |
+
"title": "Vintage Ads",
|
44 |
+
"repo":"multimodalart/vintage-ads-flux",
|
45 |
+
"trigger_word": "a vintage ad of",
|
46 |
+
"trigger_position": "prepend"
|
47 |
+
},
|
48 |
{
|
49 |
"image": "https://huggingface.co/nerijs/animation2k-flux/resolve/main/images/Q8-oVxNnXvZ9HNrgbNpGw_02762aaaba3b47859ee5fe9403a371e3.png",
|
50 |
"title": "animation2k",
|
|
|
69 |
"repo": "alvdansen/flux-koda",
|
70 |
"trigger_word": "flmft style"
|
71 |
},
|
72 |
+
{
|
73 |
+
"image": "https://huggingface.co/alvdansen/frosting_lane_flux/resolve/main/images/content%20-%202024-08-11T005936.346.jpeg",
|
74 |
+
"title": "Frosting Lane Flux",
|
75 |
+
"repo": "alvdansen/frosting_lane_flux",
|
76 |
+
"trigger_word": ""
|
77 |
+
},
|
78 |
{
|
79 |
"image": "https://pbs.twimg.com/media/GU7NsZPa8AA4Ddl?format=jpg&name=4096x4096",
|
80 |
"title": "Half Illustration",
|
|
|
118 |
"weights": "anime_lora.safetensors",
|
119 |
"trigger_word": ", anime"
|
120 |
},
|
121 |
+
{
|
122 |
+
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_14.png?raw=true",
|
123 |
+
"title": "80s Cyberpunk",
|
124 |
+
"repo": "fofr/flux-80s-cyberpunk",
|
125 |
+
"trigger_word": "style of 80s cyberpunk",
|
126 |
+
"aspect": "portrait"
|
127 |
+
},
|
128 |
{
|
129 |
"image": "https://huggingface.co/kudzueye/Boreal/resolve/main/images/ComfyUI_00845_.png",
|
130 |
"title": "Boreal",
|