Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,24 +5,19 @@ import logging
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
-
from diffusers import DiffusionPipeline
|
9 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
11 |
import copy
|
12 |
import random
|
13 |
import time
|
14 |
|
15 |
-
dtype = torch.bfloat16
|
16 |
-
device = "cuda"
|
17 |
-
|
18 |
# Load LoRAs from JSON file
|
19 |
with open('loras.json', 'r') as f:
|
20 |
loras = json.load(f)
|
21 |
|
22 |
# Initialize the base model
|
23 |
-
|
24 |
-
pipe = DiffusionPipeline.from_pretrained(
|
25 |
-
torch.cuda.empty_cache()
|
26 |
|
27 |
MAX_SEED = 2**32-1
|
28 |
|
@@ -65,22 +60,20 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
65 |
@spaces.GPU(duration=70)
|
66 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
67 |
pipe.to("cuda")
|
68 |
-
if randomize_seed:
|
69 |
-
seed = random.randint(0, MAX_SEED)
|
70 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
71 |
|
72 |
with calculateDuration("Generating image"):
|
73 |
-
|
|
|
74 |
prompt=prompt_mash,
|
75 |
num_inference_steps=steps,
|
|
|
76 |
width=width,
|
77 |
height=height,
|
78 |
-
|
79 |
-
#generator=generator,
|
80 |
-
output_type="pil",
|
81 |
joint_attention_kwargs={"scale": lora_scale},
|
82 |
-
)
|
83 |
-
|
84 |
|
85 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
86 |
if selected_index is None:
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
+
from diffusers import DiffusionPipeline
|
|
|
9 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
10 |
import copy
|
11 |
import random
|
12 |
import time
|
13 |
|
|
|
|
|
|
|
14 |
# Load LoRAs from JSON file
|
15 |
with open('loras.json', 'r') as f:
|
16 |
loras = json.load(f)
|
17 |
|
18 |
# Initialize the base model
|
19 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
20 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
|
21 |
|
22 |
MAX_SEED = 2**32-1
|
23 |
|
|
|
60 |
@spaces.GPU(duration=70)
|
61 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
62 |
pipe.to("cuda")
|
|
|
|
|
63 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
64 |
|
65 |
with calculateDuration("Generating image"):
|
66 |
+
# Generate image
|
67 |
+
image = pipe(
|
68 |
prompt=prompt_mash,
|
69 |
num_inference_steps=steps,
|
70 |
+
guidance_scale=cfg_scale,
|
71 |
width=width,
|
72 |
height=height,
|
73 |
+
generator=generator,
|
|
|
|
|
74 |
joint_attention_kwargs={"scale": lora_scale},
|
75 |
+
).images[0]
|
76 |
+
return image
|
77 |
|
78 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
79 |
if selected_index is None:
|