Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import torch | |
from typing import List, Tuple | |
from funasr_detach.register import tables | |
from funasr_detach.models.scama import utils as myutils | |
from funasr_detach.models.transformer.utils.repeat import repeat | |
from funasr_detach.models.transformer.decoder import DecoderLayer | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.transformer.embedding import PositionalEncoding | |
from funasr_detach.models.transformer.attention import MultiHeadedAttention | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.decoder import BaseTransformerDecoder | |
from funasr_detach.models.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, | |
) | |
from funasr_detach.models.sanm.positionwise_feed_forward import ( | |
PositionwiseFeedForwardDecoderSANM, | |
) | |
from funasr_detach.models.sanm.attention import ( | |
MultiHeadedAttentionSANMDecoder, | |
MultiHeadedAttentionCrossAtt, | |
) | |
class DecoderLayerSANM(torch.nn.Module): | |
"""Single decoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` instance can be used as the argument. | |
src_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` instance can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance | |
can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): Whether to use layer_norm before the first block. | |
concat_after (bool): Whether to concat attention layer's input and output. | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. i.e. x -> x + att(x) | |
""" | |
def __init__( | |
self, | |
size, | |
self_attn, | |
src_attn, | |
feed_forward, | |
dropout_rate, | |
normalize_before=True, | |
concat_after=False, | |
): | |
"""Construct an DecoderLayer object.""" | |
super(DecoderLayerSANM, self).__init__() | |
self.size = size | |
self.self_attn = self_attn | |
self.src_attn = src_attn | |
self.feed_forward = feed_forward | |
self.norm1 = LayerNorm(size) | |
if self_attn is not None: | |
self.norm2 = LayerNorm(size) | |
if src_attn is not None: | |
self.norm3 = LayerNorm(size) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
self.normalize_before = normalize_before | |
self.concat_after = concat_after | |
if self.concat_after: | |
self.concat_linear1 = torch.nn.Linear(size + size, size) | |
self.concat_linear2 = torch.nn.Linear(size + size, size) | |
self.reserve_attn = False | |
self.attn_mat = [] | |
def forward(self, tgt, tgt_mask, memory, memory_mask=None, cache=None): | |
"""Compute decoded features. | |
Args: | |
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). | |
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). | |
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size). | |
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). | |
cache (List[torch.Tensor]): List of cached tensors. | |
Each tensor shape should be (#batch, maxlen_out - 1, size). | |
Returns: | |
torch.Tensor: Output tensor(#batch, maxlen_out, size). | |
torch.Tensor: Mask for output tensor (#batch, maxlen_out). | |
torch.Tensor: Encoded memory (#batch, maxlen_in, size). | |
torch.Tensor: Encoded memory mask (#batch, maxlen_in). | |
""" | |
# tgt = self.dropout(tgt) | |
residual = tgt | |
if self.normalize_before: | |
tgt = self.norm1(tgt) | |
tgt = self.feed_forward(tgt) | |
x = tgt | |
if self.self_attn: | |
if self.normalize_before: | |
tgt = self.norm2(tgt) | |
x, _ = self.self_attn(tgt, tgt_mask) | |
x = residual + self.dropout(x) | |
if self.src_attn is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm3(x) | |
if self.reserve_attn: | |
x_src_attn, attn_mat = self.src_attn( | |
x, memory, memory_mask, ret_attn=True | |
) | |
self.attn_mat.append(attn_mat) | |
else: | |
x_src_attn = self.src_attn(x, memory, memory_mask, ret_attn=False) | |
x = residual + self.dropout(x_src_attn) | |
# x = residual + self.dropout(self.src_attn(x, memory, memory_mask)) | |
return x, tgt_mask, memory, memory_mask, cache | |
def forward_one_step(self, tgt, tgt_mask, memory, memory_mask=None, cache=None): | |
"""Compute decoded features. | |
Args: | |
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). | |
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). | |
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size). | |
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). | |
cache (List[torch.Tensor]): List of cached tensors. | |
Each tensor shape should be (#batch, maxlen_out - 1, size). | |
Returns: | |
torch.Tensor: Output tensor(#batch, maxlen_out, size). | |
torch.Tensor: Mask for output tensor (#batch, maxlen_out). | |
torch.Tensor: Encoded memory (#batch, maxlen_in, size). | |
torch.Tensor: Encoded memory mask (#batch, maxlen_in). | |
""" | |
# tgt = self.dropout(tgt) | |
residual = tgt | |
if self.normalize_before: | |
tgt = self.norm1(tgt) | |
tgt = self.feed_forward(tgt) | |
x = tgt | |
if self.self_attn: | |
if self.normalize_before: | |
tgt = self.norm2(tgt) | |
if self.training: | |
cache = None | |
x, cache = self.self_attn(tgt, tgt_mask, cache=cache) | |
x = residual + self.dropout(x) | |
if self.src_attn is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm3(x) | |
x = residual + self.dropout(self.src_attn(x, memory, memory_mask)) | |
return x, tgt_mask, memory, memory_mask, cache | |
def forward_chunk( | |
self, tgt, memory, fsmn_cache=None, opt_cache=None, chunk_size=None, look_back=0 | |
): | |
"""Compute decoded features. | |
Args: | |
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). | |
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). | |
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size). | |
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). | |
cache (List[torch.Tensor]): List of cached tensors. | |
Each tensor shape should be (#batch, maxlen_out - 1, size). | |
Returns: | |
torch.Tensor: Output tensor(#batch, maxlen_out, size). | |
torch.Tensor: Mask for output tensor (#batch, maxlen_out). | |
torch.Tensor: Encoded memory (#batch, maxlen_in, size). | |
torch.Tensor: Encoded memory mask (#batch, maxlen_in). | |
""" | |
residual = tgt | |
if self.normalize_before: | |
tgt = self.norm1(tgt) | |
tgt = self.feed_forward(tgt) | |
x = tgt | |
if self.self_attn: | |
if self.normalize_before: | |
tgt = self.norm2(tgt) | |
x, fsmn_cache = self.self_attn(tgt, None, fsmn_cache) | |
x = residual + self.dropout(x) | |
if self.src_attn is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm3(x) | |
x, opt_cache = self.src_attn.forward_chunk( | |
x, memory, opt_cache, chunk_size, look_back | |
) | |
x = residual + x | |
return x, memory, fsmn_cache, opt_cache | |
class ParaformerSANMDecoder(BaseTransformerDecoder): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition | |
https://arxiv.org/abs/2006.01713 | |
""" | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
wo_input_layer: bool = False, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
att_layer_num: int = 6, | |
kernel_size: int = 21, | |
sanm_shfit: int = 0, | |
lora_list: List[str] = None, | |
lora_rank: int = 8, | |
lora_alpha: int = 16, | |
lora_dropout: float = 0.1, | |
chunk_multiply_factor: tuple = (1,), | |
tf2torch_tensor_name_prefix_torch: str = "decoder", | |
tf2torch_tensor_name_prefix_tf: str = "seq2seq/decoder", | |
): | |
super().__init__( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
dropout_rate=dropout_rate, | |
positional_dropout_rate=positional_dropout_rate, | |
input_layer=input_layer, | |
use_output_layer=use_output_layer, | |
pos_enc_class=pos_enc_class, | |
normalize_before=normalize_before, | |
) | |
attention_dim = encoder_output_size | |
if wo_input_layer: | |
self.embed = None | |
else: | |
if input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(vocab_size, attention_dim), | |
# pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif input_layer == "linear": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Linear(vocab_size, attention_dim), | |
torch.nn.LayerNorm(attention_dim), | |
torch.nn.Dropout(dropout_rate), | |
torch.nn.ReLU(), | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
else: | |
raise ValueError( | |
f"only 'embed' or 'linear' is supported: {input_layer}" | |
) | |
self.normalize_before = normalize_before | |
if self.normalize_before: | |
self.after_norm = LayerNorm(attention_dim) | |
if use_output_layer: | |
self.output_layer = torch.nn.Linear(attention_dim, vocab_size) | |
else: | |
self.output_layer = None | |
self.att_layer_num = att_layer_num | |
self.num_blocks = num_blocks | |
if sanm_shfit is None: | |
sanm_shfit = (kernel_size - 1) // 2 | |
self.decoders = repeat( | |
att_layer_num, | |
lambda lnum: DecoderLayerSANM( | |
attention_dim, | |
MultiHeadedAttentionSANMDecoder( | |
attention_dim, | |
self_attention_dropout_rate, | |
kernel_size, | |
sanm_shfit=sanm_shfit, | |
), | |
MultiHeadedAttentionCrossAtt( | |
attention_heads, | |
attention_dim, | |
src_attention_dropout_rate, | |
lora_list, | |
lora_rank, | |
lora_alpha, | |
lora_dropout, | |
), | |
PositionwiseFeedForwardDecoderSANM( | |
attention_dim, linear_units, dropout_rate | |
), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
if num_blocks - att_layer_num <= 0: | |
self.decoders2 = None | |
else: | |
self.decoders2 = repeat( | |
num_blocks - att_layer_num, | |
lambda lnum: DecoderLayerSANM( | |
attention_dim, | |
MultiHeadedAttentionSANMDecoder( | |
attention_dim, | |
self_attention_dropout_rate, | |
kernel_size, | |
sanm_shfit=0, | |
), | |
None, | |
PositionwiseFeedForwardDecoderSANM( | |
attention_dim, linear_units, dropout_rate | |
), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
self.decoders3 = repeat( | |
1, | |
lambda lnum: DecoderLayerSANM( | |
attention_dim, | |
None, | |
None, | |
PositionwiseFeedForwardDecoderSANM( | |
attention_dim, linear_units, dropout_rate | |
), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
self.chunk_multiply_factor = chunk_multiply_factor | |
def forward( | |
self, | |
hs_pad: torch.Tensor, | |
hlens: torch.Tensor, | |
ys_in_pad: torch.Tensor, | |
ys_in_lens: torch.Tensor, | |
return_hidden: bool = False, | |
return_both: bool = False, | |
chunk_mask: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
hs_pad: encoded memory, float32 (batch, maxlen_in, feat) | |
hlens: (batch) | |
ys_in_pad: | |
input token ids, int64 (batch, maxlen_out) | |
if input_layer == "embed" | |
input tensor (batch, maxlen_out, #mels) in the other cases | |
ys_in_lens: (batch) | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, token) | |
if use_output_layer is True, | |
olens: (batch, ) | |
""" | |
tgt = ys_in_pad | |
tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None] | |
memory = hs_pad | |
memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :] | |
if chunk_mask is not None: | |
memory_mask = memory_mask * chunk_mask | |
if tgt_mask.size(1) != memory_mask.size(1): | |
memory_mask = torch.cat((memory_mask, memory_mask[:, -2:-1, :]), dim=1) | |
x = tgt | |
x, tgt_mask, memory, memory_mask, _ = self.decoders( | |
x, tgt_mask, memory, memory_mask | |
) | |
if self.decoders2 is not None: | |
x, tgt_mask, memory, memory_mask, _ = self.decoders2( | |
x, tgt_mask, memory, memory_mask | |
) | |
x, tgt_mask, memory, memory_mask, _ = self.decoders3( | |
x, tgt_mask, memory, memory_mask | |
) | |
if self.normalize_before: | |
hidden = self.after_norm(x) | |
olens = tgt_mask.sum(1) | |
if self.output_layer is not None and return_hidden is False: | |
x = self.output_layer(hidden) | |
return x, olens | |
if return_both: | |
x = self.output_layer(hidden) | |
return x, hidden, olens | |
return hidden, olens | |
def score(self, ys, state, x): | |
"""Score.""" | |
ys_mask = myutils.sequence_mask( | |
torch.tensor([len(ys)], dtype=torch.int32), device=x.device | |
)[:, :, None] | |
logp, state = self.forward_one_step( | |
ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state | |
) | |
return logp.squeeze(0), state | |
def forward_chunk( | |
self, | |
memory: torch.Tensor, | |
tgt: torch.Tensor, | |
cache: dict = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
hs_pad: encoded memory, float32 (batch, maxlen_in, feat) | |
hlens: (batch) | |
ys_in_pad: | |
input token ids, int64 (batch, maxlen_out) | |
if input_layer == "embed" | |
input tensor (batch, maxlen_out, #mels) in the other cases | |
ys_in_lens: (batch) | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, token) | |
if use_output_layer is True, | |
olens: (batch, ) | |
""" | |
x = tgt | |
if cache["decode_fsmn"] is None: | |
cache_layer_num = len(self.decoders) | |
if self.decoders2 is not None: | |
cache_layer_num += len(self.decoders2) | |
fsmn_cache = [None] * cache_layer_num | |
else: | |
fsmn_cache = cache["decode_fsmn"] | |
if cache["opt"] is None: | |
cache_layer_num = len(self.decoders) | |
opt_cache = [None] * cache_layer_num | |
else: | |
opt_cache = cache["opt"] | |
for i in range(self.att_layer_num): | |
decoder = self.decoders[i] | |
x, memory, fsmn_cache[i], opt_cache[i] = decoder.forward_chunk( | |
x, | |
memory, | |
fsmn_cache=fsmn_cache[i], | |
opt_cache=opt_cache[i], | |
chunk_size=cache["chunk_size"], | |
look_back=cache["decoder_chunk_look_back"], | |
) | |
if self.num_blocks - self.att_layer_num > 1: | |
for i in range(self.num_blocks - self.att_layer_num): | |
j = i + self.att_layer_num | |
decoder = self.decoders2[i] | |
x, memory, fsmn_cache[j], _ = decoder.forward_chunk( | |
x, memory, fsmn_cache=fsmn_cache[j] | |
) | |
for decoder in self.decoders3: | |
x, memory, _, _ = decoder.forward_chunk(x, memory) | |
if self.normalize_before: | |
x = self.after_norm(x) | |
if self.output_layer is not None: | |
x = self.output_layer(x) | |
cache["decode_fsmn"] = fsmn_cache | |
if ( | |
cache["decoder_chunk_look_back"] > 0 | |
or cache["decoder_chunk_look_back"] == -1 | |
): | |
cache["opt"] = opt_cache | |
return x | |
def forward_one_step( | |
self, | |
tgt: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
memory: torch.Tensor, | |
cache: List[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
"""Forward one step. | |
Args: | |
tgt: input token ids, int64 (batch, maxlen_out) | |
tgt_mask: input token mask, (batch, maxlen_out) | |
dtype=torch.uint8 in PyTorch 1.2- | |
dtype=torch.bool in PyTorch 1.2+ (include 1.2) | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
cache: cached output list of (batch, max_time_out-1, size) | |
Returns: | |
y, cache: NN output value and cache per `self.decoders`. | |
y.shape` is (batch, maxlen_out, token) | |
""" | |
x = self.embed(tgt) | |
if cache is None: | |
cache_layer_num = len(self.decoders) | |
if self.decoders2 is not None: | |
cache_layer_num += len(self.decoders2) | |
cache = [None] * cache_layer_num | |
new_cache = [] | |
# for c, decoder in zip(cache, self.decoders): | |
for i in range(self.att_layer_num): | |
decoder = self.decoders[i] | |
c = cache[i] | |
x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step( | |
x, tgt_mask, memory, None, cache=c | |
) | |
new_cache.append(c_ret) | |
if self.num_blocks - self.att_layer_num > 1: | |
for i in range(self.num_blocks - self.att_layer_num): | |
j = i + self.att_layer_num | |
decoder = self.decoders2[i] | |
c = cache[j] | |
x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step( | |
x, tgt_mask, memory, None, cache=c | |
) | |
new_cache.append(c_ret) | |
for decoder in self.decoders3: | |
x, tgt_mask, memory, memory_mask, _ = decoder.forward_one_step( | |
x, tgt_mask, memory, None, cache=None | |
) | |
if self.normalize_before: | |
y = self.after_norm(x[:, -1]) | |
else: | |
y = x[:, -1] | |
if self.output_layer is not None: | |
y = torch.log_softmax(self.output_layer(y), dim=-1) | |
return y, new_cache | |
class ParaformerSANDecoder(BaseTransformerDecoder): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition | |
https://arxiv.org/abs/2006.01713 | |
""" | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
embeds_id: int = -1, | |
): | |
super().__init__( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
dropout_rate=dropout_rate, | |
positional_dropout_rate=positional_dropout_rate, | |
input_layer=input_layer, | |
use_output_layer=use_output_layer, | |
pos_enc_class=pos_enc_class, | |
normalize_before=normalize_before, | |
) | |
attention_dim = encoder_output_size | |
self.decoders = repeat( | |
num_blocks, | |
lambda lnum: DecoderLayer( | |
attention_dim, | |
MultiHeadedAttention( | |
attention_heads, attention_dim, self_attention_dropout_rate | |
), | |
MultiHeadedAttention( | |
attention_heads, attention_dim, src_attention_dropout_rate | |
), | |
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
self.embeds_id = embeds_id | |
self.attention_dim = attention_dim | |
def forward( | |
self, | |
hs_pad: torch.Tensor, | |
hlens: torch.Tensor, | |
ys_in_pad: torch.Tensor, | |
ys_in_lens: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
hs_pad: encoded memory, float32 (batch, maxlen_in, feat) | |
hlens: (batch) | |
ys_in_pad: | |
input token ids, int64 (batch, maxlen_out) | |
if input_layer == "embed" | |
input tensor (batch, maxlen_out, #mels) in the other cases | |
ys_in_lens: (batch) | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, token) | |
if use_output_layer is True, | |
olens: (batch, ) | |
""" | |
tgt = ys_in_pad | |
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device) | |
memory = hs_pad | |
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to( | |
memory.device | |
) | |
# Padding for Longformer | |
if memory_mask.shape[-1] != memory.shape[1]: | |
padlen = memory.shape[1] - memory_mask.shape[-1] | |
memory_mask = torch.nn.functional.pad( | |
memory_mask, (0, padlen), "constant", False | |
) | |
# x = self.embed(tgt) | |
x = tgt | |
embeds_outputs = None | |
for layer_id, decoder in enumerate(self.decoders): | |
x, tgt_mask, memory, memory_mask = decoder(x, tgt_mask, memory, memory_mask) | |
if layer_id == self.embeds_id: | |
embeds_outputs = x | |
if self.normalize_before: | |
x = self.after_norm(x) | |
if self.output_layer is not None: | |
x = self.output_layer(x) | |
olens = tgt_mask.sum(1) | |
if embeds_outputs is not None: | |
return x, olens, embeds_outputs | |
else: | |
return x, olens | |