File size: 25,036 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import torch
from typing import List, Tuple

from funasr_detach.register import tables
from funasr_detach.models.scama import utils as myutils
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.decoder import DecoderLayer
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.transformer.embedding import PositionalEncoding
from funasr_detach.models.transformer.attention import MultiHeadedAttention
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.decoder import BaseTransformerDecoder
from funasr_detach.models.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,
)
from funasr_detach.models.sanm.positionwise_feed_forward import (
    PositionwiseFeedForwardDecoderSANM,
)
from funasr_detach.models.sanm.attention import (
    MultiHeadedAttentionSANMDecoder,
    MultiHeadedAttentionCrossAtt,
)


class DecoderLayerSANM(torch.nn.Module):
    """Single decoder layer module.

    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` instance can be used as the argument.
        src_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` instance can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)


    """

    def __init__(
        self,
        size,
        self_attn,
        src_attn,
        feed_forward,
        dropout_rate,
        normalize_before=True,
        concat_after=False,
    ):
        """Construct an DecoderLayer object."""
        super(DecoderLayerSANM, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.norm1 = LayerNorm(size)
        if self_attn is not None:
            self.norm2 = LayerNorm(size)
        if src_attn is not None:
            self.norm3 = LayerNorm(size)
        self.dropout = torch.nn.Dropout(dropout_rate)
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear1 = torch.nn.Linear(size + size, size)
            self.concat_linear2 = torch.nn.Linear(size + size, size)
        self.reserve_attn = False
        self.attn_mat = []

    def forward(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
        """Compute decoded features.

        Args:
            tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
            tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
            memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
            memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
            cache (List[torch.Tensor]): List of cached tensors.
                Each tensor shape should be (#batch, maxlen_out - 1, size).

        Returns:
            torch.Tensor: Output tensor(#batch, maxlen_out, size).
            torch.Tensor: Mask for output tensor (#batch, maxlen_out).
            torch.Tensor: Encoded memory (#batch, maxlen_in, size).
            torch.Tensor: Encoded memory mask (#batch, maxlen_in).

        """
        # tgt = self.dropout(tgt)
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        tgt = self.feed_forward(tgt)

        x = tgt
        if self.self_attn:
            if self.normalize_before:
                tgt = self.norm2(tgt)
            x, _ = self.self_attn(tgt, tgt_mask)
            x = residual + self.dropout(x)

        if self.src_attn is not None:
            residual = x
            if self.normalize_before:
                x = self.norm3(x)
            if self.reserve_attn:
                x_src_attn, attn_mat = self.src_attn(
                    x, memory, memory_mask, ret_attn=True
                )
                self.attn_mat.append(attn_mat)
            else:
                x_src_attn = self.src_attn(x, memory, memory_mask, ret_attn=False)
            x = residual + self.dropout(x_src_attn)
            # x = residual + self.dropout(self.src_attn(x, memory, memory_mask))

        return x, tgt_mask, memory, memory_mask, cache

    def forward_one_step(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
        """Compute decoded features.

        Args:
            tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
            tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
            memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
            memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
            cache (List[torch.Tensor]): List of cached tensors.
                Each tensor shape should be (#batch, maxlen_out - 1, size).

        Returns:
            torch.Tensor: Output tensor(#batch, maxlen_out, size).
            torch.Tensor: Mask for output tensor (#batch, maxlen_out).
            torch.Tensor: Encoded memory (#batch, maxlen_in, size).
            torch.Tensor: Encoded memory mask (#batch, maxlen_in).

        """
        # tgt = self.dropout(tgt)
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        tgt = self.feed_forward(tgt)

        x = tgt
        if self.self_attn:
            if self.normalize_before:
                tgt = self.norm2(tgt)
            if self.training:
                cache = None
            x, cache = self.self_attn(tgt, tgt_mask, cache=cache)
            x = residual + self.dropout(x)

        if self.src_attn is not None:
            residual = x
            if self.normalize_before:
                x = self.norm3(x)

            x = residual + self.dropout(self.src_attn(x, memory, memory_mask))

        return x, tgt_mask, memory, memory_mask, cache

    def forward_chunk(
        self, tgt, memory, fsmn_cache=None, opt_cache=None, chunk_size=None, look_back=0
    ):
        """Compute decoded features.

        Args:
            tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
            tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
            memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
            memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
            cache (List[torch.Tensor]): List of cached tensors.
                Each tensor shape should be (#batch, maxlen_out - 1, size).

        Returns:
            torch.Tensor: Output tensor(#batch, maxlen_out, size).
            torch.Tensor: Mask for output tensor (#batch, maxlen_out).
            torch.Tensor: Encoded memory (#batch, maxlen_in, size).
            torch.Tensor: Encoded memory mask (#batch, maxlen_in).

        """
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        tgt = self.feed_forward(tgt)

        x = tgt
        if self.self_attn:
            if self.normalize_before:
                tgt = self.norm2(tgt)
            x, fsmn_cache = self.self_attn(tgt, None, fsmn_cache)
            x = residual + self.dropout(x)

        if self.src_attn is not None:
            residual = x
            if self.normalize_before:
                x = self.norm3(x)

            x, opt_cache = self.src_attn.forward_chunk(
                x, memory, opt_cache, chunk_size, look_back
            )
            x = residual + x

        return x, memory, fsmn_cache, opt_cache


@tables.register("decoder_classes", "ParaformerSANMDecoder")
class ParaformerSANMDecoder(BaseTransformerDecoder):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
    https://arxiv.org/abs/2006.01713
    """

    def __init__(
        self,
        vocab_size: int,
        encoder_output_size: int,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        self_attention_dropout_rate: float = 0.0,
        src_attention_dropout_rate: float = 0.0,
        input_layer: str = "embed",
        use_output_layer: bool = True,
        wo_input_layer: bool = False,
        pos_enc_class=PositionalEncoding,
        normalize_before: bool = True,
        concat_after: bool = False,
        att_layer_num: int = 6,
        kernel_size: int = 21,
        sanm_shfit: int = 0,
        lora_list: List[str] = None,
        lora_rank: int = 8,
        lora_alpha: int = 16,
        lora_dropout: float = 0.1,
        chunk_multiply_factor: tuple = (1,),
        tf2torch_tensor_name_prefix_torch: str = "decoder",
        tf2torch_tensor_name_prefix_tf: str = "seq2seq/decoder",
    ):
        super().__init__(
            vocab_size=vocab_size,
            encoder_output_size=encoder_output_size,
            dropout_rate=dropout_rate,
            positional_dropout_rate=positional_dropout_rate,
            input_layer=input_layer,
            use_output_layer=use_output_layer,
            pos_enc_class=pos_enc_class,
            normalize_before=normalize_before,
        )

        attention_dim = encoder_output_size
        if wo_input_layer:
            self.embed = None
        else:
            if input_layer == "embed":
                self.embed = torch.nn.Sequential(
                    torch.nn.Embedding(vocab_size, attention_dim),
                    # pos_enc_class(attention_dim, positional_dropout_rate),
                )
            elif input_layer == "linear":
                self.embed = torch.nn.Sequential(
                    torch.nn.Linear(vocab_size, attention_dim),
                    torch.nn.LayerNorm(attention_dim),
                    torch.nn.Dropout(dropout_rate),
                    torch.nn.ReLU(),
                    pos_enc_class(attention_dim, positional_dropout_rate),
                )
            else:
                raise ValueError(
                    f"only 'embed' or 'linear' is supported: {input_layer}"
                )

        self.normalize_before = normalize_before
        if self.normalize_before:
            self.after_norm = LayerNorm(attention_dim)
        if use_output_layer:
            self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
        else:
            self.output_layer = None

        self.att_layer_num = att_layer_num
        self.num_blocks = num_blocks
        if sanm_shfit is None:
            sanm_shfit = (kernel_size - 1) // 2
        self.decoders = repeat(
            att_layer_num,
            lambda lnum: DecoderLayerSANM(
                attention_dim,
                MultiHeadedAttentionSANMDecoder(
                    attention_dim,
                    self_attention_dropout_rate,
                    kernel_size,
                    sanm_shfit=sanm_shfit,
                ),
                MultiHeadedAttentionCrossAtt(
                    attention_heads,
                    attention_dim,
                    src_attention_dropout_rate,
                    lora_list,
                    lora_rank,
                    lora_alpha,
                    lora_dropout,
                ),
                PositionwiseFeedForwardDecoderSANM(
                    attention_dim, linear_units, dropout_rate
                ),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        if num_blocks - att_layer_num <= 0:
            self.decoders2 = None
        else:
            self.decoders2 = repeat(
                num_blocks - att_layer_num,
                lambda lnum: DecoderLayerSANM(
                    attention_dim,
                    MultiHeadedAttentionSANMDecoder(
                        attention_dim,
                        self_attention_dropout_rate,
                        kernel_size,
                        sanm_shfit=0,
                    ),
                    None,
                    PositionwiseFeedForwardDecoderSANM(
                        attention_dim, linear_units, dropout_rate
                    ),
                    dropout_rate,
                    normalize_before,
                    concat_after,
                ),
            )

        self.decoders3 = repeat(
            1,
            lambda lnum: DecoderLayerSANM(
                attention_dim,
                None,
                None,
                PositionwiseFeedForwardDecoderSANM(
                    attention_dim, linear_units, dropout_rate
                ),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
        self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
        self.chunk_multiply_factor = chunk_multiply_factor

    def forward(
        self,
        hs_pad: torch.Tensor,
        hlens: torch.Tensor,
        ys_in_pad: torch.Tensor,
        ys_in_lens: torch.Tensor,
        return_hidden: bool = False,
        return_both: bool = False,
        chunk_mask: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward decoder.

        Args:
            hs_pad: encoded memory, float32  (batch, maxlen_in, feat)
            hlens: (batch)
            ys_in_pad:
                input token ids, int64 (batch, maxlen_out)
                if input_layer == "embed"
                input tensor (batch, maxlen_out, #mels) in the other cases
            ys_in_lens: (batch)
        Returns:
            (tuple): tuple containing:

            x: decoded token score before softmax (batch, maxlen_out, token)
                if use_output_layer is True,
            olens: (batch, )
        """
        tgt = ys_in_pad
        tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]

        memory = hs_pad
        memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
        if chunk_mask is not None:
            memory_mask = memory_mask * chunk_mask
            if tgt_mask.size(1) != memory_mask.size(1):
                memory_mask = torch.cat((memory_mask, memory_mask[:, -2:-1, :]), dim=1)

        x = tgt
        x, tgt_mask, memory, memory_mask, _ = self.decoders(
            x, tgt_mask, memory, memory_mask
        )
        if self.decoders2 is not None:
            x, tgt_mask, memory, memory_mask, _ = self.decoders2(
                x, tgt_mask, memory, memory_mask
            )
        x, tgt_mask, memory, memory_mask, _ = self.decoders3(
            x, tgt_mask, memory, memory_mask
        )
        if self.normalize_before:
            hidden = self.after_norm(x)

        olens = tgt_mask.sum(1)
        if self.output_layer is not None and return_hidden is False:
            x = self.output_layer(hidden)
            return x, olens
        if return_both:
            x = self.output_layer(hidden)
            return x, hidden, olens
        return hidden, olens

    def score(self, ys, state, x):
        """Score."""
        ys_mask = myutils.sequence_mask(
            torch.tensor([len(ys)], dtype=torch.int32), device=x.device
        )[:, :, None]
        logp, state = self.forward_one_step(
            ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state
        )
        return logp.squeeze(0), state

    def forward_chunk(
        self,
        memory: torch.Tensor,
        tgt: torch.Tensor,
        cache: dict = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward decoder.

        Args:
            hs_pad: encoded memory, float32  (batch, maxlen_in, feat)
            hlens: (batch)
            ys_in_pad:
                input token ids, int64 (batch, maxlen_out)
                if input_layer == "embed"
                input tensor (batch, maxlen_out, #mels) in the other cases
            ys_in_lens: (batch)
        Returns:
            (tuple): tuple containing:

            x: decoded token score before softmax (batch, maxlen_out, token)
                if use_output_layer is True,
            olens: (batch, )
        """
        x = tgt
        if cache["decode_fsmn"] is None:
            cache_layer_num = len(self.decoders)
            if self.decoders2 is not None:
                cache_layer_num += len(self.decoders2)
            fsmn_cache = [None] * cache_layer_num
        else:
            fsmn_cache = cache["decode_fsmn"]

        if cache["opt"] is None:
            cache_layer_num = len(self.decoders)
            opt_cache = [None] * cache_layer_num
        else:
            opt_cache = cache["opt"]

        for i in range(self.att_layer_num):
            decoder = self.decoders[i]
            x, memory, fsmn_cache[i], opt_cache[i] = decoder.forward_chunk(
                x,
                memory,
                fsmn_cache=fsmn_cache[i],
                opt_cache=opt_cache[i],
                chunk_size=cache["chunk_size"],
                look_back=cache["decoder_chunk_look_back"],
            )

        if self.num_blocks - self.att_layer_num > 1:
            for i in range(self.num_blocks - self.att_layer_num):
                j = i + self.att_layer_num
                decoder = self.decoders2[i]
                x, memory, fsmn_cache[j], _ = decoder.forward_chunk(
                    x, memory, fsmn_cache=fsmn_cache[j]
                )

        for decoder in self.decoders3:
            x, memory, _, _ = decoder.forward_chunk(x, memory)
        if self.normalize_before:
            x = self.after_norm(x)
        if self.output_layer is not None:
            x = self.output_layer(x)

        cache["decode_fsmn"] = fsmn_cache
        if (
            cache["decoder_chunk_look_back"] > 0
            or cache["decoder_chunk_look_back"] == -1
        ):
            cache["opt"] = opt_cache
        return x

    def forward_one_step(
        self,
        tgt: torch.Tensor,
        tgt_mask: torch.Tensor,
        memory: torch.Tensor,
        cache: List[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        """Forward one step.

        Args:
            tgt: input token ids, int64 (batch, maxlen_out)
            tgt_mask: input token mask,  (batch, maxlen_out)
                      dtype=torch.uint8 in PyTorch 1.2-
                      dtype=torch.bool in PyTorch 1.2+ (include 1.2)
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            cache: cached output list of (batch, max_time_out-1, size)
        Returns:
            y, cache: NN output value and cache per `self.decoders`.
            y.shape` is (batch, maxlen_out, token)
        """
        x = self.embed(tgt)
        if cache is None:
            cache_layer_num = len(self.decoders)
            if self.decoders2 is not None:
                cache_layer_num += len(self.decoders2)
            cache = [None] * cache_layer_num
        new_cache = []
        # for c, decoder in zip(cache, self.decoders):
        for i in range(self.att_layer_num):
            decoder = self.decoders[i]
            c = cache[i]
            x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step(
                x, tgt_mask, memory, None, cache=c
            )
            new_cache.append(c_ret)

        if self.num_blocks - self.att_layer_num > 1:
            for i in range(self.num_blocks - self.att_layer_num):
                j = i + self.att_layer_num
                decoder = self.decoders2[i]
                c = cache[j]
                x, tgt_mask, memory, memory_mask, c_ret = decoder.forward_one_step(
                    x, tgt_mask, memory, None, cache=c
                )
                new_cache.append(c_ret)

        for decoder in self.decoders3:

            x, tgt_mask, memory, memory_mask, _ = decoder.forward_one_step(
                x, tgt_mask, memory, None, cache=None
            )

        if self.normalize_before:
            y = self.after_norm(x[:, -1])
        else:
            y = x[:, -1]
        if self.output_layer is not None:
            y = torch.log_softmax(self.output_layer(y), dim=-1)

        return y, new_cache


@tables.register("decoder_classes", "ParaformerSANDecoder")
class ParaformerSANDecoder(BaseTransformerDecoder):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
    https://arxiv.org/abs/2006.01713
    """

    def __init__(
        self,
        vocab_size: int,
        encoder_output_size: int,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        self_attention_dropout_rate: float = 0.0,
        src_attention_dropout_rate: float = 0.0,
        input_layer: str = "embed",
        use_output_layer: bool = True,
        pos_enc_class=PositionalEncoding,
        normalize_before: bool = True,
        concat_after: bool = False,
        embeds_id: int = -1,
    ):
        super().__init__(
            vocab_size=vocab_size,
            encoder_output_size=encoder_output_size,
            dropout_rate=dropout_rate,
            positional_dropout_rate=positional_dropout_rate,
            input_layer=input_layer,
            use_output_layer=use_output_layer,
            pos_enc_class=pos_enc_class,
            normalize_before=normalize_before,
        )

        attention_dim = encoder_output_size
        self.decoders = repeat(
            num_blocks,
            lambda lnum: DecoderLayer(
                attention_dim,
                MultiHeadedAttention(
                    attention_heads, attention_dim, self_attention_dropout_rate
                ),
                MultiHeadedAttention(
                    attention_heads, attention_dim, src_attention_dropout_rate
                ),
                PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
                dropout_rate,
                normalize_before,
                concat_after,
            ),
        )
        self.embeds_id = embeds_id
        self.attention_dim = attention_dim

    def forward(
        self,
        hs_pad: torch.Tensor,
        hlens: torch.Tensor,
        ys_in_pad: torch.Tensor,
        ys_in_lens: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward decoder.

        Args:
            hs_pad: encoded memory, float32  (batch, maxlen_in, feat)
            hlens: (batch)
            ys_in_pad:
                input token ids, int64 (batch, maxlen_out)
                if input_layer == "embed"
                input tensor (batch, maxlen_out, #mels) in the other cases
            ys_in_lens: (batch)
        Returns:
            (tuple): tuple containing:

            x: decoded token score before softmax (batch, maxlen_out, token)
                if use_output_layer is True,
            olens: (batch, )
        """
        tgt = ys_in_pad
        tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)

        memory = hs_pad
        memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to(
            memory.device
        )
        # Padding for Longformer
        if memory_mask.shape[-1] != memory.shape[1]:
            padlen = memory.shape[1] - memory_mask.shape[-1]
            memory_mask = torch.nn.functional.pad(
                memory_mask, (0, padlen), "constant", False
            )

        # x = self.embed(tgt)
        x = tgt
        embeds_outputs = None
        for layer_id, decoder in enumerate(self.decoders):
            x, tgt_mask, memory, memory_mask = decoder(x, tgt_mask, memory, memory_mask)
            if layer_id == self.embeds_id:
                embeds_outputs = x
        if self.normalize_before:
            x = self.after_norm(x)
        if self.output_layer is not None:
            x = self.output_layer(x)

        olens = tgt_mask.sum(1)
        if embeds_outputs is not None:
            return x, olens, embeds_outputs
        else:
            return x, olens