Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import os | |
import json | |
import time | |
import math | |
import torch | |
from torch import nn | |
from enum import Enum | |
from dataclasses import dataclass | |
from funasr_detach.register import tables | |
from typing import List, Tuple, Dict, Any, Optional | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
class VadStateMachine(Enum): | |
kVadInStateStartPointNotDetected = 1 | |
kVadInStateInSpeechSegment = 2 | |
kVadInStateEndPointDetected = 3 | |
class FrameState(Enum): | |
kFrameStateInvalid = -1 | |
kFrameStateSpeech = 1 | |
kFrameStateSil = 0 | |
# final voice/unvoice state per frame | |
class AudioChangeState(Enum): | |
kChangeStateSpeech2Speech = 0 | |
kChangeStateSpeech2Sil = 1 | |
kChangeStateSil2Sil = 2 | |
kChangeStateSil2Speech = 3 | |
kChangeStateNoBegin = 4 | |
kChangeStateInvalid = 5 | |
class VadDetectMode(Enum): | |
kVadSingleUtteranceDetectMode = 0 | |
kVadMutipleUtteranceDetectMode = 1 | |
class VADXOptions: | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Deep-FSMN for Large Vocabulary Continuous Speech Recognition | |
https://arxiv.org/abs/1803.05030 | |
""" | |
def __init__( | |
self, | |
sample_rate: int = 16000, | |
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value, | |
snr_mode: int = 0, | |
max_end_silence_time: int = 800, | |
max_start_silence_time: int = 3000, | |
do_start_point_detection: bool = True, | |
do_end_point_detection: bool = True, | |
window_size_ms: int = 200, | |
sil_to_speech_time_thres: int = 150, | |
speech_to_sil_time_thres: int = 150, | |
speech_2_noise_ratio: float = 1.0, | |
do_extend: int = 1, | |
lookback_time_start_point: int = 200, | |
lookahead_time_end_point: int = 100, | |
max_single_segment_time: int = 60000, | |
nn_eval_block_size: int = 8, | |
dcd_block_size: int = 4, | |
snr_thres: int = -100.0, | |
noise_frame_num_used_for_snr: int = 100, | |
decibel_thres: int = -100.0, | |
speech_noise_thres: float = 0.6, | |
fe_prior_thres: float = 1e-4, | |
silence_pdf_num: int = 1, | |
sil_pdf_ids: List[int] = [0], | |
speech_noise_thresh_low: float = -0.1, | |
speech_noise_thresh_high: float = 0.3, | |
output_frame_probs: bool = False, | |
frame_in_ms: int = 10, | |
frame_length_ms: int = 25, | |
**kwargs, | |
): | |
self.sample_rate = sample_rate | |
self.detect_mode = detect_mode | |
self.snr_mode = snr_mode | |
self.max_end_silence_time = max_end_silence_time | |
self.max_start_silence_time = max_start_silence_time | |
self.do_start_point_detection = do_start_point_detection | |
self.do_end_point_detection = do_end_point_detection | |
self.window_size_ms = window_size_ms | |
self.sil_to_speech_time_thres = sil_to_speech_time_thres | |
self.speech_to_sil_time_thres = speech_to_sil_time_thres | |
self.speech_2_noise_ratio = speech_2_noise_ratio | |
self.do_extend = do_extend | |
self.lookback_time_start_point = lookback_time_start_point | |
self.lookahead_time_end_point = lookahead_time_end_point | |
self.max_single_segment_time = max_single_segment_time | |
self.nn_eval_block_size = nn_eval_block_size | |
self.dcd_block_size = dcd_block_size | |
self.snr_thres = snr_thres | |
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr | |
self.decibel_thres = decibel_thres | |
self.speech_noise_thres = speech_noise_thres | |
self.fe_prior_thres = fe_prior_thres | |
self.silence_pdf_num = silence_pdf_num | |
self.sil_pdf_ids = sil_pdf_ids | |
self.speech_noise_thresh_low = speech_noise_thresh_low | |
self.speech_noise_thresh_high = speech_noise_thresh_high | |
self.output_frame_probs = output_frame_probs | |
self.frame_in_ms = frame_in_ms | |
self.frame_length_ms = frame_length_ms | |
class E2EVadSpeechBufWithDoa(object): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Deep-FSMN for Large Vocabulary Continuous Speech Recognition | |
https://arxiv.org/abs/1803.05030 | |
""" | |
def __init__(self): | |
self.start_ms = 0 | |
self.end_ms = 0 | |
self.buffer = [] | |
self.contain_seg_start_point = False | |
self.contain_seg_end_point = False | |
self.doa = 0 | |
def Reset(self): | |
self.start_ms = 0 | |
self.end_ms = 0 | |
self.buffer = [] | |
self.contain_seg_start_point = False | |
self.contain_seg_end_point = False | |
self.doa = 0 | |
class E2EVadFrameProb(object): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Deep-FSMN for Large Vocabulary Continuous Speech Recognition | |
https://arxiv.org/abs/1803.05030 | |
""" | |
def __init__(self): | |
self.noise_prob = 0.0 | |
self.speech_prob = 0.0 | |
self.score = 0.0 | |
self.frame_id = 0 | |
self.frm_state = 0 | |
class WindowDetector(object): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Deep-FSMN for Large Vocabulary Continuous Speech Recognition | |
https://arxiv.org/abs/1803.05030 | |
""" | |
def __init__( | |
self, | |
window_size_ms: int, | |
sil_to_speech_time: int, | |
speech_to_sil_time: int, | |
frame_size_ms: int, | |
): | |
self.window_size_ms = window_size_ms | |
self.sil_to_speech_time = sil_to_speech_time | |
self.speech_to_sil_time = speech_to_sil_time | |
self.frame_size_ms = frame_size_ms | |
self.win_size_frame = int(window_size_ms / frame_size_ms) | |
self.win_sum = 0 | |
self.win_state = [0] * self.win_size_frame # 初始化窗 | |
self.cur_win_pos = 0 | |
self.pre_frame_state = FrameState.kFrameStateSil | |
self.cur_frame_state = FrameState.kFrameStateSil | |
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms) | |
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms) | |
self.voice_last_frame_count = 0 | |
self.noise_last_frame_count = 0 | |
self.hydre_frame_count = 0 | |
def Reset(self) -> None: | |
self.cur_win_pos = 0 | |
self.win_sum = 0 | |
self.win_state = [0] * self.win_size_frame | |
self.pre_frame_state = FrameState.kFrameStateSil | |
self.cur_frame_state = FrameState.kFrameStateSil | |
self.voice_last_frame_count = 0 | |
self.noise_last_frame_count = 0 | |
self.hydre_frame_count = 0 | |
def GetWinSize(self) -> int: | |
return int(self.win_size_frame) | |
def DetectOneFrame( | |
self, frameState: FrameState, frame_count: int, cache: dict = {} | |
) -> AudioChangeState: | |
cur_frame_state = FrameState.kFrameStateSil | |
if frameState == FrameState.kFrameStateSpeech: | |
cur_frame_state = 1 | |
elif frameState == FrameState.kFrameStateSil: | |
cur_frame_state = 0 | |
else: | |
return AudioChangeState.kChangeStateInvalid | |
self.win_sum -= self.win_state[self.cur_win_pos] | |
self.win_sum += cur_frame_state | |
self.win_state[self.cur_win_pos] = cur_frame_state | |
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame | |
if ( | |
self.pre_frame_state == FrameState.kFrameStateSil | |
and self.win_sum >= self.sil_to_speech_frmcnt_thres | |
): | |
self.pre_frame_state = FrameState.kFrameStateSpeech | |
return AudioChangeState.kChangeStateSil2Speech | |
if ( | |
self.pre_frame_state == FrameState.kFrameStateSpeech | |
and self.win_sum <= self.speech_to_sil_frmcnt_thres | |
): | |
self.pre_frame_state = FrameState.kFrameStateSil | |
return AudioChangeState.kChangeStateSpeech2Sil | |
if self.pre_frame_state == FrameState.kFrameStateSil: | |
return AudioChangeState.kChangeStateSil2Sil | |
if self.pre_frame_state == FrameState.kFrameStateSpeech: | |
return AudioChangeState.kChangeStateSpeech2Speech | |
return AudioChangeState.kChangeStateInvalid | |
def FrameSizeMs(self) -> int: | |
return int(self.frame_size_ms) | |
class Stats(object): | |
def __init__( | |
self, | |
sil_pdf_ids, | |
max_end_sil_frame_cnt_thresh, | |
speech_noise_thres, | |
): | |
self.data_buf_start_frame = 0 | |
self.frm_cnt = 0 | |
self.latest_confirmed_speech_frame = 0 | |
self.lastest_confirmed_silence_frame = -1 | |
self.continous_silence_frame_count = 0 | |
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected | |
self.confirmed_start_frame = -1 | |
self.confirmed_end_frame = -1 | |
self.number_end_time_detected = 0 | |
self.sil_frame = 0 | |
self.sil_pdf_ids = sil_pdf_ids | |
self.noise_average_decibel = -100.0 | |
self.pre_end_silence_detected = False | |
self.next_seg = True | |
self.output_data_buf = [] | |
self.output_data_buf_offset = 0 | |
self.frame_probs = [] | |
self.max_end_sil_frame_cnt_thresh = max_end_sil_frame_cnt_thresh | |
self.speech_noise_thres = speech_noise_thres | |
self.scores = None | |
self.max_time_out = False | |
self.decibel = [] | |
self.data_buf = None | |
self.data_buf_all = None | |
self.waveform = None | |
self.last_drop_frames = 0 | |
class FsmnVADStreaming(nn.Module): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Deep-FSMN for Large Vocabulary Continuous Speech Recognition | |
https://arxiv.org/abs/1803.05030 | |
""" | |
def __init__( | |
self, | |
encoder: str = None, | |
encoder_conf: Optional[Dict] = None, | |
vad_post_args: Dict[str, Any] = None, | |
**kwargs, | |
): | |
super().__init__() | |
self.vad_opts = VADXOptions(**kwargs) | |
encoder_class = tables.encoder_classes.get(encoder) | |
encoder = encoder_class(**encoder_conf) | |
self.encoder = encoder | |
def ResetDetection(self, cache: dict = {}): | |
cache["stats"].continous_silence_frame_count = 0 | |
cache["stats"].latest_confirmed_speech_frame = 0 | |
cache["stats"].lastest_confirmed_silence_frame = -1 | |
cache["stats"].confirmed_start_frame = -1 | |
cache["stats"].confirmed_end_frame = -1 | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateStartPointNotDetected | |
) | |
cache["windows_detector"].Reset() | |
cache["stats"].sil_frame = 0 | |
cache["stats"].frame_probs = [] | |
if cache["stats"].output_data_buf: | |
assert cache["stats"].output_data_buf[-1].contain_seg_end_point == True | |
drop_frames = int( | |
cache["stats"].output_data_buf[-1].end_ms / self.vad_opts.frame_in_ms | |
) | |
real_drop_frames = drop_frames - cache["stats"].last_drop_frames | |
cache["stats"].last_drop_frames = drop_frames | |
cache["stats"].data_buf_all = cache["stats"].data_buf_all[ | |
real_drop_frames | |
* int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000) : | |
] | |
cache["stats"].decibel = cache["stats"].decibel[real_drop_frames:] | |
cache["stats"].scores = cache["stats"].scores[:, real_drop_frames:, :] | |
def ComputeDecibel(self, cache: dict = {}) -> None: | |
frame_sample_length = int( | |
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 | |
) | |
frame_shift_length = int( | |
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000 | |
) | |
if cache["stats"].data_buf_all is None: | |
cache["stats"].data_buf_all = cache["stats"].waveform[ | |
0 | |
] # cache["stats"].data_buf is pointed to cache["stats"].waveform[0] | |
cache["stats"].data_buf = cache["stats"].data_buf_all | |
else: | |
cache["stats"].data_buf_all = torch.cat( | |
(cache["stats"].data_buf_all, cache["stats"].waveform[0]) | |
) | |
for offset in range( | |
0, | |
cache["stats"].waveform.shape[1] - frame_sample_length + 1, | |
frame_shift_length, | |
): | |
cache["stats"].decibel.append( | |
10 | |
* math.log10( | |
(cache["stats"].waveform[0][offset : offset + frame_sample_length]) | |
.square() | |
.sum() | |
+ 0.000001 | |
) | |
) | |
def ComputeScores(self, feats: torch.Tensor, cache: dict = {}) -> None: | |
scores = self.encoder(feats, cache=cache["encoder"]).to( | |
"cpu" | |
) # return B * T * D | |
assert ( | |
scores.shape[1] == feats.shape[1] | |
), "The shape between feats and scores does not match" | |
self.vad_opts.nn_eval_block_size = scores.shape[1] | |
cache["stats"].frm_cnt += scores.shape[1] # count total frames | |
if cache["stats"].scores is None: | |
cache["stats"].scores = scores # the first calculation | |
else: | |
cache["stats"].scores = torch.cat((cache["stats"].scores, scores), dim=1) | |
def PopDataBufTillFrame( | |
self, frame_idx: int, cache: dict = {} | |
) -> None: # need check again | |
while cache["stats"].data_buf_start_frame < frame_idx: | |
if len(cache["stats"].data_buf) >= int( | |
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000 | |
): | |
cache["stats"].data_buf_start_frame += 1 | |
cache["stats"].data_buf = cache["stats"].data_buf_all[ | |
( | |
cache["stats"].data_buf_start_frame | |
- cache["stats"].last_drop_frames | |
) | |
* int( | |
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000 | |
) : | |
] | |
def PopDataToOutputBuf( | |
self, | |
start_frm: int, | |
frm_cnt: int, | |
first_frm_is_start_point: bool, | |
last_frm_is_end_point: bool, | |
end_point_is_sent_end: bool, | |
cache: dict = {}, | |
) -> None: | |
self.PopDataBufTillFrame(start_frm, cache=cache) | |
expected_sample_number = int( | |
frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000 | |
) | |
if last_frm_is_end_point: | |
extra_sample = max( | |
0, | |
int( | |
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 | |
- self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000 | |
), | |
) | |
expected_sample_number += int(extra_sample) | |
if end_point_is_sent_end: | |
expected_sample_number = max( | |
expected_sample_number, len(cache["stats"].data_buf) | |
) | |
if len(cache["stats"].data_buf) < expected_sample_number: | |
print("error in calling pop data_buf\n") | |
if len(cache["stats"].output_data_buf) == 0 or first_frm_is_start_point: | |
cache["stats"].output_data_buf.append(E2EVadSpeechBufWithDoa()) | |
cache["stats"].output_data_buf[-1].Reset() | |
cache["stats"].output_data_buf[-1].start_ms = ( | |
start_frm * self.vad_opts.frame_in_ms | |
) | |
cache["stats"].output_data_buf[-1].end_ms = ( | |
cache["stats"].output_data_buf[-1].start_ms | |
) | |
cache["stats"].output_data_buf[-1].doa = 0 | |
cur_seg = cache["stats"].output_data_buf[-1] | |
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms: | |
print("warning\n") | |
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作 | |
data_to_pop = 0 | |
if end_point_is_sent_end: | |
data_to_pop = expected_sample_number | |
else: | |
data_to_pop = int( | |
frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000 | |
) | |
if data_to_pop > len(cache["stats"].data_buf): | |
print('VAD data_to_pop is bigger than cache["stats"].data_buf.size()!!!\n') | |
data_to_pop = len(cache["stats"].data_buf) | |
expected_sample_number = len(cache["stats"].data_buf) | |
cur_seg.doa = 0 | |
for sample_cpy_out in range(0, data_to_pop): | |
# cur_seg.buffer[out_pos ++] = data_buf_.back(); | |
out_pos += 1 | |
for sample_cpy_out in range(data_to_pop, expected_sample_number): | |
# cur_seg.buffer[out_pos++] = data_buf_.back() | |
out_pos += 1 | |
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms: | |
print("Something wrong with the VAD algorithm\n") | |
cache["stats"].data_buf_start_frame += frm_cnt | |
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms | |
if first_frm_is_start_point: | |
cur_seg.contain_seg_start_point = True | |
if last_frm_is_end_point: | |
cur_seg.contain_seg_end_point = True | |
def OnSilenceDetected(self, valid_frame: int, cache: dict = {}): | |
cache["stats"].lastest_confirmed_silence_frame = valid_frame | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateStartPointNotDetected | |
): | |
self.PopDataBufTillFrame(valid_frame, cache=cache) | |
# silence_detected_callback_ | |
# pass | |
def OnVoiceDetected(self, valid_frame: int, cache: dict = {}) -> None: | |
cache["stats"].latest_confirmed_speech_frame = valid_frame | |
self.PopDataToOutputBuf(valid_frame, 1, False, False, False, cache=cache) | |
def OnVoiceStart( | |
self, start_frame: int, fake_result: bool = False, cache: dict = {} | |
) -> None: | |
if self.vad_opts.do_start_point_detection: | |
pass | |
if cache["stats"].confirmed_start_frame != -1: | |
print("not reset vad properly\n") | |
else: | |
cache["stats"].confirmed_start_frame = start_frame | |
if ( | |
not fake_result | |
and cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateStartPointNotDetected | |
): | |
self.PopDataToOutputBuf( | |
cache["stats"].confirmed_start_frame, 1, True, False, False, cache=cache | |
) | |
def OnVoiceEnd( | |
self, end_frame: int, fake_result: bool, is_last_frame: bool, cache: dict = {} | |
) -> None: | |
for t in range(cache["stats"].latest_confirmed_speech_frame + 1, end_frame): | |
self.OnVoiceDetected(t, cache=cache) | |
if self.vad_opts.do_end_point_detection: | |
pass | |
if cache["stats"].confirmed_end_frame != -1: | |
print("not reset vad properly\n") | |
else: | |
cache["stats"].confirmed_end_frame = end_frame | |
if not fake_result: | |
cache["stats"].sil_frame = 0 | |
self.PopDataToOutputBuf( | |
cache["stats"].confirmed_end_frame, | |
1, | |
False, | |
True, | |
is_last_frame, | |
cache=cache, | |
) | |
cache["stats"].number_end_time_detected += 1 | |
def MaybeOnVoiceEndIfLastFrame( | |
self, is_final_frame: bool, cur_frm_idx: int, cache: dict = {} | |
) -> None: | |
if is_final_frame: | |
self.OnVoiceEnd(cur_frm_idx, False, True, cache=cache) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateEndPointDetected | |
) | |
def GetLatency(self, cache: dict = {}) -> int: | |
return int( | |
self.LatencyFrmNumAtStartPoint(cache=cache) * self.vad_opts.frame_in_ms | |
) | |
def LatencyFrmNumAtStartPoint(self, cache: dict = {}) -> int: | |
vad_latency = cache["windows_detector"].GetWinSize() | |
if self.vad_opts.do_extend: | |
vad_latency += int( | |
self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms | |
) | |
return vad_latency | |
def GetFrameState(self, t: int, cache: dict = {}): | |
frame_state = FrameState.kFrameStateInvalid | |
cur_decibel = cache["stats"].decibel[t] | |
cur_snr = cur_decibel - cache["stats"].noise_average_decibel | |
# for each frame, calc log posterior probability of each state | |
if cur_decibel < self.vad_opts.decibel_thres: | |
frame_state = FrameState.kFrameStateSil | |
self.DetectOneFrame(frame_state, t, False, cache=cache) | |
return frame_state | |
sum_score = 0.0 | |
noise_prob = 0.0 | |
assert len(cache["stats"].sil_pdf_ids) == self.vad_opts.silence_pdf_num | |
if len(cache["stats"].sil_pdf_ids) > 0: | |
assert len(cache["stats"].scores) == 1 # 只支持batch_size = 1的测试 | |
sil_pdf_scores = [ | |
cache["stats"].scores[0][t][sil_pdf_id] | |
for sil_pdf_id in cache["stats"].sil_pdf_ids | |
] | |
sum_score = sum(sil_pdf_scores) | |
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio | |
total_score = 1.0 | |
sum_score = total_score - sum_score | |
speech_prob = math.log(sum_score) | |
if self.vad_opts.output_frame_probs: | |
frame_prob = E2EVadFrameProb() | |
frame_prob.noise_prob = noise_prob | |
frame_prob.speech_prob = speech_prob | |
frame_prob.score = sum_score | |
frame_prob.frame_id = t | |
cache["stats"].frame_probs.append(frame_prob) | |
if ( | |
math.exp(speech_prob) | |
>= math.exp(noise_prob) + cache["stats"].speech_noise_thres | |
): | |
if ( | |
cur_snr >= self.vad_opts.snr_thres | |
and cur_decibel >= self.vad_opts.decibel_thres | |
): | |
frame_state = FrameState.kFrameStateSpeech | |
else: | |
frame_state = FrameState.kFrameStateSil | |
else: | |
frame_state = FrameState.kFrameStateSil | |
if cache["stats"].noise_average_decibel < -99.9: | |
cache["stats"].noise_average_decibel = cur_decibel | |
else: | |
cache["stats"].noise_average_decibel = ( | |
cur_decibel | |
+ cache["stats"].noise_average_decibel | |
* (self.vad_opts.noise_frame_num_used_for_snr - 1) | |
) / self.vad_opts.noise_frame_num_used_for_snr | |
return frame_state | |
def forward( | |
self, | |
feats: torch.Tensor, | |
waveform: torch.tensor, | |
cache: dict = {}, | |
is_final: bool = False, | |
**kwargs, | |
): | |
# if len(cache) == 0: | |
# self.AllResetDetection() | |
# self.waveform = waveform # compute decibel for each frame | |
cache["stats"].waveform = waveform | |
is_streaming_input = kwargs.get("is_streaming_input", True) | |
self.ComputeDecibel(cache=cache) | |
self.ComputeScores(feats, cache=cache) | |
if not is_final: | |
self.DetectCommonFrames(cache=cache) | |
else: | |
self.DetectLastFrames(cache=cache) | |
segments = [] | |
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now | |
segment_batch = [] | |
if len(cache["stats"].output_data_buf) > 0: | |
for i in range( | |
cache["stats"].output_data_buf_offset, | |
len(cache["stats"].output_data_buf), | |
): | |
if ( | |
is_streaming_input | |
): # in this case, return [beg, -1], [], [-1, end], [beg, end] | |
if ( | |
not cache["stats"] | |
.output_data_buf[i] | |
.contain_seg_start_point | |
): | |
continue | |
if ( | |
not cache["stats"].next_seg | |
and not cache["stats"] | |
.output_data_buf[i] | |
.contain_seg_end_point | |
): | |
continue | |
start_ms = ( | |
cache["stats"].output_data_buf[i].start_ms | |
if cache["stats"].next_seg | |
else -1 | |
) | |
if cache["stats"].output_data_buf[i].contain_seg_end_point: | |
end_ms = cache["stats"].output_data_buf[i].end_ms | |
cache["stats"].next_seg = True | |
cache["stats"].output_data_buf_offset += 1 | |
else: | |
end_ms = -1 | |
cache["stats"].next_seg = False | |
segment = [start_ms, end_ms] | |
else: # in this case, return [beg, end] | |
if not is_final and ( | |
not cache["stats"] | |
.output_data_buf[i] | |
.contain_seg_start_point | |
or not cache["stats"] | |
.output_data_buf[i] | |
.contain_seg_end_point | |
): | |
continue | |
segment = [ | |
cache["stats"].output_data_buf[i].start_ms, | |
cache["stats"].output_data_buf[i].end_ms, | |
] | |
cache[ | |
"stats" | |
].output_data_buf_offset += 1 # need update this parameter | |
segment_batch.append(segment) | |
if segment_batch: | |
segments.append(segment_batch) | |
# if is_final: | |
# # reset class variables and clear the dict for the next query | |
# self.AllResetDetection() | |
return segments | |
def init_cache(self, cache: dict = {}, **kwargs): | |
cache["frontend"] = {} | |
cache["prev_samples"] = torch.empty(0) | |
cache["encoder"] = {} | |
windows_detector = WindowDetector( | |
self.vad_opts.window_size_ms, | |
self.vad_opts.sil_to_speech_time_thres, | |
self.vad_opts.speech_to_sil_time_thres, | |
self.vad_opts.frame_in_ms, | |
) | |
windows_detector.Reset() | |
stats = Stats( | |
sil_pdf_ids=self.vad_opts.sil_pdf_ids, | |
max_end_sil_frame_cnt_thresh=self.vad_opts.max_end_silence_time | |
- self.vad_opts.speech_to_sil_time_thres, | |
speech_noise_thres=self.vad_opts.speech_noise_thres, | |
) | |
cache["windows_detector"] = windows_detector | |
cache["stats"] = stats | |
return cache | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
cache: dict = {}, | |
**kwargs, | |
): | |
if len(cache) == 0: | |
self.init_cache(cache, **kwargs) | |
meta_data = {} | |
chunk_size = kwargs.get("chunk_size", 60000) # 50ms | |
chunk_stride_samples = int(chunk_size * frontend.fs / 1000) | |
time1 = time.perf_counter() | |
is_streaming_input = ( | |
kwargs.get("is_streaming_input", False) | |
if chunk_size >= 15000 | |
else kwargs.get("is_streaming_input", True) | |
) | |
is_final = ( | |
kwargs.get("is_final", False) | |
if is_streaming_input | |
else kwargs.get("is_final", True) | |
) | |
cfg = {"is_final": is_final, "is_streaming_input": is_streaming_input} | |
audio_sample_list = load_audio_text_image_video( | |
data_in, | |
fs=frontend.fs, | |
audio_fs=kwargs.get("fs", 16000), | |
data_type=kwargs.get("data_type", "sound"), | |
tokenizer=tokenizer, | |
cache=cfg, | |
) | |
_is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True | |
is_streaming_input = cfg["is_streaming_input"] | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
assert len(audio_sample_list) == 1, "batch_size must be set 1" | |
audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0])) | |
n = int(len(audio_sample) // chunk_stride_samples + int(_is_final)) | |
m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final))) | |
segments = [] | |
for i in range(n): | |
kwargs["is_final"] = _is_final and i == n - 1 | |
audio_sample_i = audio_sample[ | |
i * chunk_stride_samples : (i + 1) * chunk_stride_samples | |
] | |
# extract fbank feats | |
speech, speech_lengths = extract_fbank( | |
[audio_sample_i], | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
cache=cache["frontend"], | |
is_final=kwargs["is_final"], | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() | |
* frontend.frame_shift | |
* frontend.lfr_n | |
/ 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
batch = { | |
"feats": speech, | |
"waveform": cache["frontend"]["waveforms"], | |
"is_final": kwargs["is_final"], | |
"cache": cache, | |
"is_streaming_input": is_streaming_input, | |
} | |
segments_i = self.forward(**batch) | |
if len(segments_i) > 0: | |
segments.extend(*segments_i) | |
cache["prev_samples"] = audio_sample[:-m] | |
if _is_final: | |
self.init_cache(cache) | |
ibest_writer = None | |
if kwargs.get("output_dir") is not None: | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"{1}best_recog"] | |
results = [] | |
result_i = {"key": key[0], "value": segments} | |
if ( | |
"MODELSCOPE_ENVIRONMENT" in os.environ | |
and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas" | |
): | |
result_i = json.dumps(result_i) | |
results.append(result_i) | |
if ibest_writer is not None: | |
ibest_writer["text"][key[0]] = segments | |
return results, meta_data | |
def DetectCommonFrames(self, cache: dict = {}) -> int: | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateEndPointDetected | |
): | |
return 0 | |
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1): | |
frame_state = FrameState.kFrameStateInvalid | |
frame_state = self.GetFrameState( | |
cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames, | |
cache=cache, | |
) | |
self.DetectOneFrame( | |
frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache | |
) | |
return 0 | |
def DetectLastFrames(self, cache: dict = {}) -> int: | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateEndPointDetected | |
): | |
return 0 | |
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1): | |
frame_state = FrameState.kFrameStateInvalid | |
frame_state = self.GetFrameState( | |
cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames, | |
cache=cache, | |
) | |
if i != 0: | |
self.DetectOneFrame( | |
frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache | |
) | |
else: | |
self.DetectOneFrame( | |
frame_state, cache["stats"].frm_cnt - 1, True, cache=cache | |
) | |
return 0 | |
def DetectOneFrame( | |
self, | |
cur_frm_state: FrameState, | |
cur_frm_idx: int, | |
is_final_frame: bool, | |
cache: dict = {}, | |
) -> None: | |
tmp_cur_frm_state = FrameState.kFrameStateInvalid | |
if cur_frm_state == FrameState.kFrameStateSpeech: | |
if math.fabs(1.0) > self.vad_opts.fe_prior_thres: | |
tmp_cur_frm_state = FrameState.kFrameStateSpeech | |
else: | |
tmp_cur_frm_state = FrameState.kFrameStateSil | |
elif cur_frm_state == FrameState.kFrameStateSil: | |
tmp_cur_frm_state = FrameState.kFrameStateSil | |
state_change = cache["windows_detector"].DetectOneFrame( | |
tmp_cur_frm_state, cur_frm_idx, cache=cache | |
) | |
frm_shift_in_ms = self.vad_opts.frame_in_ms | |
if AudioChangeState.kChangeStateSil2Speech == state_change: | |
silence_frame_count = cache["stats"].continous_silence_frame_count | |
cache["stats"].continous_silence_frame_count = 0 | |
cache["stats"].pre_end_silence_detected = False | |
start_frame = 0 | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateStartPointNotDetected | |
): | |
start_frame = max( | |
cache["stats"].data_buf_start_frame, | |
cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache), | |
) | |
self.OnVoiceStart(start_frame, cache=cache) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateInSpeechSegment | |
) | |
for t in range(start_frame + 1, cur_frm_idx + 1): | |
self.OnVoiceDetected(t, cache=cache) | |
elif ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateInSpeechSegment | |
): | |
for t in range( | |
cache["stats"].latest_confirmed_speech_frame + 1, cur_frm_idx | |
): | |
self.OnVoiceDetected(t, cache=cache) | |
if ( | |
cur_frm_idx - cache["stats"].confirmed_start_frame + 1 | |
> self.vad_opts.max_single_segment_time / frm_shift_in_ms | |
): | |
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateEndPointDetected | |
) | |
elif not is_final_frame: | |
self.OnVoiceDetected(cur_frm_idx, cache=cache) | |
else: | |
self.MaybeOnVoiceEndIfLastFrame( | |
is_final_frame, cur_frm_idx, cache=cache | |
) | |
else: | |
pass | |
elif AudioChangeState.kChangeStateSpeech2Sil == state_change: | |
cache["stats"].continous_silence_frame_count = 0 | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateStartPointNotDetected | |
): | |
pass | |
elif ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateInSpeechSegment | |
): | |
if ( | |
cur_frm_idx - cache["stats"].confirmed_start_frame + 1 | |
> self.vad_opts.max_single_segment_time / frm_shift_in_ms | |
): | |
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateEndPointDetected | |
) | |
elif not is_final_frame: | |
self.OnVoiceDetected(cur_frm_idx, cache=cache) | |
else: | |
self.MaybeOnVoiceEndIfLastFrame( | |
is_final_frame, cur_frm_idx, cache=cache | |
) | |
else: | |
pass | |
elif AudioChangeState.kChangeStateSpeech2Speech == state_change: | |
cache["stats"].continous_silence_frame_count = 0 | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateInSpeechSegment | |
): | |
if ( | |
cur_frm_idx - cache["stats"].confirmed_start_frame + 1 | |
> self.vad_opts.max_single_segment_time / frm_shift_in_ms | |
): | |
cache["stats"].max_time_out = True | |
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateEndPointDetected | |
) | |
elif not is_final_frame: | |
self.OnVoiceDetected(cur_frm_idx, cache=cache) | |
else: | |
self.MaybeOnVoiceEndIfLastFrame( | |
is_final_frame, cur_frm_idx, cache=cache | |
) | |
else: | |
pass | |
elif AudioChangeState.kChangeStateSil2Sil == state_change: | |
cache["stats"].continous_silence_frame_count += 1 | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateStartPointNotDetected | |
): | |
# silence timeout, return zero length decision | |
if ( | |
( | |
self.vad_opts.detect_mode | |
== VadDetectMode.kVadSingleUtteranceDetectMode.value | |
) | |
and ( | |
cache["stats"].continous_silence_frame_count * frm_shift_in_ms | |
> self.vad_opts.max_start_silence_time | |
) | |
) or (is_final_frame and cache["stats"].number_end_time_detected == 0): | |
for t in range( | |
cache["stats"].lastest_confirmed_silence_frame + 1, cur_frm_idx | |
): | |
self.OnSilenceDetected(t, cache=cache) | |
self.OnVoiceStart(0, True, cache=cache) | |
self.OnVoiceEnd(0, True, False, cache=cache) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateEndPointDetected | |
) | |
else: | |
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint(cache=cache): | |
self.OnSilenceDetected( | |
cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache), | |
cache=cache, | |
) | |
elif ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateInSpeechSegment | |
): | |
if ( | |
cache["stats"].continous_silence_frame_count * frm_shift_in_ms | |
>= cache["stats"].max_end_sil_frame_cnt_thresh | |
): | |
lookback_frame = int( | |
cache["stats"].max_end_sil_frame_cnt_thresh / frm_shift_in_ms | |
) | |
if self.vad_opts.do_extend: | |
lookback_frame -= int( | |
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms | |
) | |
lookback_frame -= 1 | |
lookback_frame = max(0, lookback_frame) | |
self.OnVoiceEnd( | |
cur_frm_idx - lookback_frame, False, False, cache=cache | |
) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateEndPointDetected | |
) | |
elif ( | |
cur_frm_idx - cache["stats"].confirmed_start_frame + 1 | |
> self.vad_opts.max_single_segment_time / frm_shift_in_ms | |
): | |
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache) | |
cache["stats"].vad_state_machine = ( | |
VadStateMachine.kVadInStateEndPointDetected | |
) | |
elif self.vad_opts.do_extend and not is_final_frame: | |
if cache["stats"].continous_silence_frame_count <= int( | |
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms | |
): | |
self.OnVoiceDetected(cur_frm_idx, cache=cache) | |
else: | |
self.MaybeOnVoiceEndIfLastFrame( | |
is_final_frame, cur_frm_idx, cache=cache | |
) | |
else: | |
pass | |
if ( | |
cache["stats"].vad_state_machine | |
== VadStateMachine.kVadInStateEndPointDetected | |
and self.vad_opts.detect_mode | |
== VadDetectMode.kVadMutipleUtteranceDetectMode.value | |
): | |
self.ResetDetection(cache=cache) | |