mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
raw
history blame
41.1 kB
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os
import json
import time
import math
import torch
from torch import nn
from enum import Enum
from dataclasses import dataclass
from funasr_detach.register import tables
from typing import List, Tuple, Dict, Any, Optional
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
class VadStateMachine(Enum):
kVadInStateStartPointNotDetected = 1
kVadInStateInSpeechSegment = 2
kVadInStateEndPointDetected = 3
class FrameState(Enum):
kFrameStateInvalid = -1
kFrameStateSpeech = 1
kFrameStateSil = 0
# final voice/unvoice state per frame
class AudioChangeState(Enum):
kChangeStateSpeech2Speech = 0
kChangeStateSpeech2Sil = 1
kChangeStateSil2Sil = 2
kChangeStateSil2Speech = 3
kChangeStateNoBegin = 4
kChangeStateInvalid = 5
class VadDetectMode(Enum):
kVadSingleUtteranceDetectMode = 0
kVadMutipleUtteranceDetectMode = 1
class VADXOptions:
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(
self,
sample_rate: int = 16000,
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
snr_mode: int = 0,
max_end_silence_time: int = 800,
max_start_silence_time: int = 3000,
do_start_point_detection: bool = True,
do_end_point_detection: bool = True,
window_size_ms: int = 200,
sil_to_speech_time_thres: int = 150,
speech_to_sil_time_thres: int = 150,
speech_2_noise_ratio: float = 1.0,
do_extend: int = 1,
lookback_time_start_point: int = 200,
lookahead_time_end_point: int = 100,
max_single_segment_time: int = 60000,
nn_eval_block_size: int = 8,
dcd_block_size: int = 4,
snr_thres: int = -100.0,
noise_frame_num_used_for_snr: int = 100,
decibel_thres: int = -100.0,
speech_noise_thres: float = 0.6,
fe_prior_thres: float = 1e-4,
silence_pdf_num: int = 1,
sil_pdf_ids: List[int] = [0],
speech_noise_thresh_low: float = -0.1,
speech_noise_thresh_high: float = 0.3,
output_frame_probs: bool = False,
frame_in_ms: int = 10,
frame_length_ms: int = 25,
**kwargs,
):
self.sample_rate = sample_rate
self.detect_mode = detect_mode
self.snr_mode = snr_mode
self.max_end_silence_time = max_end_silence_time
self.max_start_silence_time = max_start_silence_time
self.do_start_point_detection = do_start_point_detection
self.do_end_point_detection = do_end_point_detection
self.window_size_ms = window_size_ms
self.sil_to_speech_time_thres = sil_to_speech_time_thres
self.speech_to_sil_time_thres = speech_to_sil_time_thres
self.speech_2_noise_ratio = speech_2_noise_ratio
self.do_extend = do_extend
self.lookback_time_start_point = lookback_time_start_point
self.lookahead_time_end_point = lookahead_time_end_point
self.max_single_segment_time = max_single_segment_time
self.nn_eval_block_size = nn_eval_block_size
self.dcd_block_size = dcd_block_size
self.snr_thres = snr_thres
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
self.decibel_thres = decibel_thres
self.speech_noise_thres = speech_noise_thres
self.fe_prior_thres = fe_prior_thres
self.silence_pdf_num = silence_pdf_num
self.sil_pdf_ids = sil_pdf_ids
self.speech_noise_thresh_low = speech_noise_thresh_low
self.speech_noise_thresh_high = speech_noise_thresh_high
self.output_frame_probs = output_frame_probs
self.frame_in_ms = frame_in_ms
self.frame_length_ms = frame_length_ms
class E2EVadSpeechBufWithDoa(object):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
def Reset(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
class E2EVadFrameProb(object):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(self):
self.noise_prob = 0.0
self.speech_prob = 0.0
self.score = 0.0
self.frame_id = 0
self.frm_state = 0
class WindowDetector(object):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(
self,
window_size_ms: int,
sil_to_speech_time: int,
speech_to_sil_time: int,
frame_size_ms: int,
):
self.window_size_ms = window_size_ms
self.sil_to_speech_time = sil_to_speech_time
self.speech_to_sil_time = speech_to_sil_time
self.frame_size_ms = frame_size_ms
self.win_size_frame = int(window_size_ms / frame_size_ms)
self.win_sum = 0
self.win_state = [0] * self.win_size_frame # 初始化窗
self.cur_win_pos = 0
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def Reset(self) -> None:
self.cur_win_pos = 0
self.win_sum = 0
self.win_state = [0] * self.win_size_frame
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def GetWinSize(self) -> int:
return int(self.win_size_frame)
def DetectOneFrame(
self, frameState: FrameState, frame_count: int, cache: dict = {}
) -> AudioChangeState:
cur_frame_state = FrameState.kFrameStateSil
if frameState == FrameState.kFrameStateSpeech:
cur_frame_state = 1
elif frameState == FrameState.kFrameStateSil:
cur_frame_state = 0
else:
return AudioChangeState.kChangeStateInvalid
self.win_sum -= self.win_state[self.cur_win_pos]
self.win_sum += cur_frame_state
self.win_state[self.cur_win_pos] = cur_frame_state
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
if (
self.pre_frame_state == FrameState.kFrameStateSil
and self.win_sum >= self.sil_to_speech_frmcnt_thres
):
self.pre_frame_state = FrameState.kFrameStateSpeech
return AudioChangeState.kChangeStateSil2Speech
if (
self.pre_frame_state == FrameState.kFrameStateSpeech
and self.win_sum <= self.speech_to_sil_frmcnt_thres
):
self.pre_frame_state = FrameState.kFrameStateSil
return AudioChangeState.kChangeStateSpeech2Sil
if self.pre_frame_state == FrameState.kFrameStateSil:
return AudioChangeState.kChangeStateSil2Sil
if self.pre_frame_state == FrameState.kFrameStateSpeech:
return AudioChangeState.kChangeStateSpeech2Speech
return AudioChangeState.kChangeStateInvalid
def FrameSizeMs(self) -> int:
return int(self.frame_size_ms)
class Stats(object):
def __init__(
self,
sil_pdf_ids,
max_end_sil_frame_cnt_thresh,
speech_noise_thres,
):
self.data_buf_start_frame = 0
self.frm_cnt = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.continous_silence_frame_count = 0
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.number_end_time_detected = 0
self.sil_frame = 0
self.sil_pdf_ids = sil_pdf_ids
self.noise_average_decibel = -100.0
self.pre_end_silence_detected = False
self.next_seg = True
self.output_data_buf = []
self.output_data_buf_offset = 0
self.frame_probs = []
self.max_end_sil_frame_cnt_thresh = max_end_sil_frame_cnt_thresh
self.speech_noise_thres = speech_noise_thres
self.scores = None
self.max_time_out = False
self.decibel = []
self.data_buf = None
self.data_buf_all = None
self.waveform = None
self.last_drop_frames = 0
@tables.register("model_classes", "FsmnVADStreaming")
class FsmnVADStreaming(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(
self,
encoder: str = None,
encoder_conf: Optional[Dict] = None,
vad_post_args: Dict[str, Any] = None,
**kwargs,
):
super().__init__()
self.vad_opts = VADXOptions(**kwargs)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(**encoder_conf)
self.encoder = encoder
def ResetDetection(self, cache: dict = {}):
cache["stats"].continous_silence_frame_count = 0
cache["stats"].latest_confirmed_speech_frame = 0
cache["stats"].lastest_confirmed_silence_frame = -1
cache["stats"].confirmed_start_frame = -1
cache["stats"].confirmed_end_frame = -1
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateStartPointNotDetected
)
cache["windows_detector"].Reset()
cache["stats"].sil_frame = 0
cache["stats"].frame_probs = []
if cache["stats"].output_data_buf:
assert cache["stats"].output_data_buf[-1].contain_seg_end_point == True
drop_frames = int(
cache["stats"].output_data_buf[-1].end_ms / self.vad_opts.frame_in_ms
)
real_drop_frames = drop_frames - cache["stats"].last_drop_frames
cache["stats"].last_drop_frames = drop_frames
cache["stats"].data_buf_all = cache["stats"].data_buf_all[
real_drop_frames
* int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000) :
]
cache["stats"].decibel = cache["stats"].decibel[real_drop_frames:]
cache["stats"].scores = cache["stats"].scores[:, real_drop_frames:, :]
def ComputeDecibel(self, cache: dict = {}) -> None:
frame_sample_length = int(
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
)
frame_shift_length = int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
)
if cache["stats"].data_buf_all is None:
cache["stats"].data_buf_all = cache["stats"].waveform[
0
] # cache["stats"].data_buf is pointed to cache["stats"].waveform[0]
cache["stats"].data_buf = cache["stats"].data_buf_all
else:
cache["stats"].data_buf_all = torch.cat(
(cache["stats"].data_buf_all, cache["stats"].waveform[0])
)
for offset in range(
0,
cache["stats"].waveform.shape[1] - frame_sample_length + 1,
frame_shift_length,
):
cache["stats"].decibel.append(
10
* math.log10(
(cache["stats"].waveform[0][offset : offset + frame_sample_length])
.square()
.sum()
+ 0.000001
)
)
def ComputeScores(self, feats: torch.Tensor, cache: dict = {}) -> None:
scores = self.encoder(feats, cache=cache["encoder"]).to(
"cpu"
) # return B * T * D
assert (
scores.shape[1] == feats.shape[1]
), "The shape between feats and scores does not match"
self.vad_opts.nn_eval_block_size = scores.shape[1]
cache["stats"].frm_cnt += scores.shape[1] # count total frames
if cache["stats"].scores is None:
cache["stats"].scores = scores # the first calculation
else:
cache["stats"].scores = torch.cat((cache["stats"].scores, scores), dim=1)
def PopDataBufTillFrame(
self, frame_idx: int, cache: dict = {}
) -> None: # need check again
while cache["stats"].data_buf_start_frame < frame_idx:
if len(cache["stats"].data_buf) >= int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
):
cache["stats"].data_buf_start_frame += 1
cache["stats"].data_buf = cache["stats"].data_buf_all[
(
cache["stats"].data_buf_start_frame
- cache["stats"].last_drop_frames
)
* int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
) :
]
def PopDataToOutputBuf(
self,
start_frm: int,
frm_cnt: int,
first_frm_is_start_point: bool,
last_frm_is_end_point: bool,
end_point_is_sent_end: bool,
cache: dict = {},
) -> None:
self.PopDataBufTillFrame(start_frm, cache=cache)
expected_sample_number = int(
frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
)
if last_frm_is_end_point:
extra_sample = max(
0,
int(
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
- self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
),
)
expected_sample_number += int(extra_sample)
if end_point_is_sent_end:
expected_sample_number = max(
expected_sample_number, len(cache["stats"].data_buf)
)
if len(cache["stats"].data_buf) < expected_sample_number:
print("error in calling pop data_buf\n")
if len(cache["stats"].output_data_buf) == 0 or first_frm_is_start_point:
cache["stats"].output_data_buf.append(E2EVadSpeechBufWithDoa())
cache["stats"].output_data_buf[-1].Reset()
cache["stats"].output_data_buf[-1].start_ms = (
start_frm * self.vad_opts.frame_in_ms
)
cache["stats"].output_data_buf[-1].end_ms = (
cache["stats"].output_data_buf[-1].start_ms
)
cache["stats"].output_data_buf[-1].doa = 0
cur_seg = cache["stats"].output_data_buf[-1]
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
print("warning\n")
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
data_to_pop = 0
if end_point_is_sent_end:
data_to_pop = expected_sample_number
else:
data_to_pop = int(
frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
)
if data_to_pop > len(cache["stats"].data_buf):
print('VAD data_to_pop is bigger than cache["stats"].data_buf.size()!!!\n')
data_to_pop = len(cache["stats"].data_buf)
expected_sample_number = len(cache["stats"].data_buf)
cur_seg.doa = 0
for sample_cpy_out in range(0, data_to_pop):
# cur_seg.buffer[out_pos ++] = data_buf_.back();
out_pos += 1
for sample_cpy_out in range(data_to_pop, expected_sample_number):
# cur_seg.buffer[out_pos++] = data_buf_.back()
out_pos += 1
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
print("Something wrong with the VAD algorithm\n")
cache["stats"].data_buf_start_frame += frm_cnt
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
if first_frm_is_start_point:
cur_seg.contain_seg_start_point = True
if last_frm_is_end_point:
cur_seg.contain_seg_end_point = True
def OnSilenceDetected(self, valid_frame: int, cache: dict = {}):
cache["stats"].lastest_confirmed_silence_frame = valid_frame
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
self.PopDataBufTillFrame(valid_frame, cache=cache)
# silence_detected_callback_
# pass
def OnVoiceDetected(self, valid_frame: int, cache: dict = {}) -> None:
cache["stats"].latest_confirmed_speech_frame = valid_frame
self.PopDataToOutputBuf(valid_frame, 1, False, False, False, cache=cache)
def OnVoiceStart(
self, start_frame: int, fake_result: bool = False, cache: dict = {}
) -> None:
if self.vad_opts.do_start_point_detection:
pass
if cache["stats"].confirmed_start_frame != -1:
print("not reset vad properly\n")
else:
cache["stats"].confirmed_start_frame = start_frame
if (
not fake_result
and cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
self.PopDataToOutputBuf(
cache["stats"].confirmed_start_frame, 1, True, False, False, cache=cache
)
def OnVoiceEnd(
self, end_frame: int, fake_result: bool, is_last_frame: bool, cache: dict = {}
) -> None:
for t in range(cache["stats"].latest_confirmed_speech_frame + 1, end_frame):
self.OnVoiceDetected(t, cache=cache)
if self.vad_opts.do_end_point_detection:
pass
if cache["stats"].confirmed_end_frame != -1:
print("not reset vad properly\n")
else:
cache["stats"].confirmed_end_frame = end_frame
if not fake_result:
cache["stats"].sil_frame = 0
self.PopDataToOutputBuf(
cache["stats"].confirmed_end_frame,
1,
False,
True,
is_last_frame,
cache=cache,
)
cache["stats"].number_end_time_detected += 1
def MaybeOnVoiceEndIfLastFrame(
self, is_final_frame: bool, cur_frm_idx: int, cache: dict = {}
) -> None:
if is_final_frame:
self.OnVoiceEnd(cur_frm_idx, False, True, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
def GetLatency(self, cache: dict = {}) -> int:
return int(
self.LatencyFrmNumAtStartPoint(cache=cache) * self.vad_opts.frame_in_ms
)
def LatencyFrmNumAtStartPoint(self, cache: dict = {}) -> int:
vad_latency = cache["windows_detector"].GetWinSize()
if self.vad_opts.do_extend:
vad_latency += int(
self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms
)
return vad_latency
def GetFrameState(self, t: int, cache: dict = {}):
frame_state = FrameState.kFrameStateInvalid
cur_decibel = cache["stats"].decibel[t]
cur_snr = cur_decibel - cache["stats"].noise_average_decibel
# for each frame, calc log posterior probability of each state
if cur_decibel < self.vad_opts.decibel_thres:
frame_state = FrameState.kFrameStateSil
self.DetectOneFrame(frame_state, t, False, cache=cache)
return frame_state
sum_score = 0.0
noise_prob = 0.0
assert len(cache["stats"].sil_pdf_ids) == self.vad_opts.silence_pdf_num
if len(cache["stats"].sil_pdf_ids) > 0:
assert len(cache["stats"].scores) == 1 # 只支持batch_size = 1的测试
sil_pdf_scores = [
cache["stats"].scores[0][t][sil_pdf_id]
for sil_pdf_id in cache["stats"].sil_pdf_ids
]
sum_score = sum(sil_pdf_scores)
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
total_score = 1.0
sum_score = total_score - sum_score
speech_prob = math.log(sum_score)
if self.vad_opts.output_frame_probs:
frame_prob = E2EVadFrameProb()
frame_prob.noise_prob = noise_prob
frame_prob.speech_prob = speech_prob
frame_prob.score = sum_score
frame_prob.frame_id = t
cache["stats"].frame_probs.append(frame_prob)
if (
math.exp(speech_prob)
>= math.exp(noise_prob) + cache["stats"].speech_noise_thres
):
if (
cur_snr >= self.vad_opts.snr_thres
and cur_decibel >= self.vad_opts.decibel_thres
):
frame_state = FrameState.kFrameStateSpeech
else:
frame_state = FrameState.kFrameStateSil
else:
frame_state = FrameState.kFrameStateSil
if cache["stats"].noise_average_decibel < -99.9:
cache["stats"].noise_average_decibel = cur_decibel
else:
cache["stats"].noise_average_decibel = (
cur_decibel
+ cache["stats"].noise_average_decibel
* (self.vad_opts.noise_frame_num_used_for_snr - 1)
) / self.vad_opts.noise_frame_num_used_for_snr
return frame_state
def forward(
self,
feats: torch.Tensor,
waveform: torch.tensor,
cache: dict = {},
is_final: bool = False,
**kwargs,
):
# if len(cache) == 0:
# self.AllResetDetection()
# self.waveform = waveform # compute decibel for each frame
cache["stats"].waveform = waveform
is_streaming_input = kwargs.get("is_streaming_input", True)
self.ComputeDecibel(cache=cache)
self.ComputeScores(feats, cache=cache)
if not is_final:
self.DetectCommonFrames(cache=cache)
else:
self.DetectLastFrames(cache=cache)
segments = []
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
segment_batch = []
if len(cache["stats"].output_data_buf) > 0:
for i in range(
cache["stats"].output_data_buf_offset,
len(cache["stats"].output_data_buf),
):
if (
is_streaming_input
): # in this case, return [beg, -1], [], [-1, end], [beg, end]
if (
not cache["stats"]
.output_data_buf[i]
.contain_seg_start_point
):
continue
if (
not cache["stats"].next_seg
and not cache["stats"]
.output_data_buf[i]
.contain_seg_end_point
):
continue
start_ms = (
cache["stats"].output_data_buf[i].start_ms
if cache["stats"].next_seg
else -1
)
if cache["stats"].output_data_buf[i].contain_seg_end_point:
end_ms = cache["stats"].output_data_buf[i].end_ms
cache["stats"].next_seg = True
cache["stats"].output_data_buf_offset += 1
else:
end_ms = -1
cache["stats"].next_seg = False
segment = [start_ms, end_ms]
else: # in this case, return [beg, end]
if not is_final and (
not cache["stats"]
.output_data_buf[i]
.contain_seg_start_point
or not cache["stats"]
.output_data_buf[i]
.contain_seg_end_point
):
continue
segment = [
cache["stats"].output_data_buf[i].start_ms,
cache["stats"].output_data_buf[i].end_ms,
]
cache[
"stats"
].output_data_buf_offset += 1 # need update this parameter
segment_batch.append(segment)
if segment_batch:
segments.append(segment_batch)
# if is_final:
# # reset class variables and clear the dict for the next query
# self.AllResetDetection()
return segments
def init_cache(self, cache: dict = {}, **kwargs):
cache["frontend"] = {}
cache["prev_samples"] = torch.empty(0)
cache["encoder"] = {}
windows_detector = WindowDetector(
self.vad_opts.window_size_ms,
self.vad_opts.sil_to_speech_time_thres,
self.vad_opts.speech_to_sil_time_thres,
self.vad_opts.frame_in_ms,
)
windows_detector.Reset()
stats = Stats(
sil_pdf_ids=self.vad_opts.sil_pdf_ids,
max_end_sil_frame_cnt_thresh=self.vad_opts.max_end_silence_time
- self.vad_opts.speech_to_sil_time_thres,
speech_noise_thres=self.vad_opts.speech_noise_thres,
)
cache["windows_detector"] = windows_detector
cache["stats"] = stats
return cache
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
cache: dict = {},
**kwargs,
):
if len(cache) == 0:
self.init_cache(cache, **kwargs)
meta_data = {}
chunk_size = kwargs.get("chunk_size", 60000) # 50ms
chunk_stride_samples = int(chunk_size * frontend.fs / 1000)
time1 = time.perf_counter()
is_streaming_input = (
kwargs.get("is_streaming_input", False)
if chunk_size >= 15000
else kwargs.get("is_streaming_input", True)
)
is_final = (
kwargs.get("is_final", False)
if is_streaming_input
else kwargs.get("is_final", True)
)
cfg = {"is_final": is_final, "is_streaming_input": is_streaming_input}
audio_sample_list = load_audio_text_image_video(
data_in,
fs=frontend.fs,
audio_fs=kwargs.get("fs", 16000),
data_type=kwargs.get("data_type", "sound"),
tokenizer=tokenizer,
cache=cfg,
)
_is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True
is_streaming_input = cfg["is_streaming_input"]
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
assert len(audio_sample_list) == 1, "batch_size must be set 1"
audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0]))
n = int(len(audio_sample) // chunk_stride_samples + int(_is_final))
m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final)))
segments = []
for i in range(n):
kwargs["is_final"] = _is_final and i == n - 1
audio_sample_i = audio_sample[
i * chunk_stride_samples : (i + 1) * chunk_stride_samples
]
# extract fbank feats
speech, speech_lengths = extract_fbank(
[audio_sample_i],
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
cache=cache["frontend"],
is_final=kwargs["is_final"],
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item()
* frontend.frame_shift
* frontend.lfr_n
/ 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
batch = {
"feats": speech,
"waveform": cache["frontend"]["waveforms"],
"is_final": kwargs["is_final"],
"cache": cache,
"is_streaming_input": is_streaming_input,
}
segments_i = self.forward(**batch)
if len(segments_i) > 0:
segments.extend(*segments_i)
cache["prev_samples"] = audio_sample[:-m]
if _is_final:
self.init_cache(cache)
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{1}best_recog"]
results = []
result_i = {"key": key[0], "value": segments}
if (
"MODELSCOPE_ENVIRONMENT" in os.environ
and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas"
):
result_i = json.dumps(result_i)
results.append(result_i)
if ibest_writer is not None:
ibest_writer["text"][key[0]] = segments
return results, meta_data
def DetectCommonFrames(self, cache: dict = {}) -> int:
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateEndPointDetected
):
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.GetFrameState(
cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames,
cache=cache,
)
self.DetectOneFrame(
frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache
)
return 0
def DetectLastFrames(self, cache: dict = {}) -> int:
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateEndPointDetected
):
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.GetFrameState(
cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames,
cache=cache,
)
if i != 0:
self.DetectOneFrame(
frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache
)
else:
self.DetectOneFrame(
frame_state, cache["stats"].frm_cnt - 1, True, cache=cache
)
return 0
def DetectOneFrame(
self,
cur_frm_state: FrameState,
cur_frm_idx: int,
is_final_frame: bool,
cache: dict = {},
) -> None:
tmp_cur_frm_state = FrameState.kFrameStateInvalid
if cur_frm_state == FrameState.kFrameStateSpeech:
if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
tmp_cur_frm_state = FrameState.kFrameStateSpeech
else:
tmp_cur_frm_state = FrameState.kFrameStateSil
elif cur_frm_state == FrameState.kFrameStateSil:
tmp_cur_frm_state = FrameState.kFrameStateSil
state_change = cache["windows_detector"].DetectOneFrame(
tmp_cur_frm_state, cur_frm_idx, cache=cache
)
frm_shift_in_ms = self.vad_opts.frame_in_ms
if AudioChangeState.kChangeStateSil2Speech == state_change:
silence_frame_count = cache["stats"].continous_silence_frame_count
cache["stats"].continous_silence_frame_count = 0
cache["stats"].pre_end_silence_detected = False
start_frame = 0
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
start_frame = max(
cache["stats"].data_buf_start_frame,
cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache),
)
self.OnVoiceStart(start_frame, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateInSpeechSegment
)
for t in range(start_frame + 1, cur_frm_idx + 1):
self.OnVoiceDetected(t, cache=cache)
elif (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
for t in range(
cache["stats"].latest_confirmed_speech_frame + 1, cur_frm_idx
):
self.OnVoiceDetected(t, cache=cache)
if (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
cache["stats"].continous_silence_frame_count = 0
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
pass
elif (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
if (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
cache["stats"].continous_silence_frame_count = 0
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
if (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
cache["stats"].max_time_out = True
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
elif AudioChangeState.kChangeStateSil2Sil == state_change:
cache["stats"].continous_silence_frame_count += 1
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
# silence timeout, return zero length decision
if (
(
self.vad_opts.detect_mode
== VadDetectMode.kVadSingleUtteranceDetectMode.value
)
and (
cache["stats"].continous_silence_frame_count * frm_shift_in_ms
> self.vad_opts.max_start_silence_time
)
) or (is_final_frame and cache["stats"].number_end_time_detected == 0):
for t in range(
cache["stats"].lastest_confirmed_silence_frame + 1, cur_frm_idx
):
self.OnSilenceDetected(t, cache=cache)
self.OnVoiceStart(0, True, cache=cache)
self.OnVoiceEnd(0, True, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
else:
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint(cache=cache):
self.OnSilenceDetected(
cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache),
cache=cache,
)
elif (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
if (
cache["stats"].continous_silence_frame_count * frm_shift_in_ms
>= cache["stats"].max_end_sil_frame_cnt_thresh
):
lookback_frame = int(
cache["stats"].max_end_sil_frame_cnt_thresh / frm_shift_in_ms
)
if self.vad_opts.do_extend:
lookback_frame -= int(
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
)
lookback_frame -= 1
lookback_frame = max(0, lookback_frame)
self.OnVoiceEnd(
cur_frm_idx - lookback_frame, False, False, cache=cache
)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif self.vad_opts.do_extend and not is_final_frame:
if cache["stats"].continous_silence_frame_count <= int(
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
):
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateEndPointDetected
and self.vad_opts.detect_mode
== VadDetectMode.kVadMutipleUtteranceDetectMode.value
):
self.ResetDetection(cache=cache)