Spaces:
Runtime error
Runtime error
File size: 41,137 Bytes
0102e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os
import json
import time
import math
import torch
from torch import nn
from enum import Enum
from dataclasses import dataclass
from funasr_detach.register import tables
from typing import List, Tuple, Dict, Any, Optional
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
class VadStateMachine(Enum):
kVadInStateStartPointNotDetected = 1
kVadInStateInSpeechSegment = 2
kVadInStateEndPointDetected = 3
class FrameState(Enum):
kFrameStateInvalid = -1
kFrameStateSpeech = 1
kFrameStateSil = 0
# final voice/unvoice state per frame
class AudioChangeState(Enum):
kChangeStateSpeech2Speech = 0
kChangeStateSpeech2Sil = 1
kChangeStateSil2Sil = 2
kChangeStateSil2Speech = 3
kChangeStateNoBegin = 4
kChangeStateInvalid = 5
class VadDetectMode(Enum):
kVadSingleUtteranceDetectMode = 0
kVadMutipleUtteranceDetectMode = 1
class VADXOptions:
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(
self,
sample_rate: int = 16000,
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
snr_mode: int = 0,
max_end_silence_time: int = 800,
max_start_silence_time: int = 3000,
do_start_point_detection: bool = True,
do_end_point_detection: bool = True,
window_size_ms: int = 200,
sil_to_speech_time_thres: int = 150,
speech_to_sil_time_thres: int = 150,
speech_2_noise_ratio: float = 1.0,
do_extend: int = 1,
lookback_time_start_point: int = 200,
lookahead_time_end_point: int = 100,
max_single_segment_time: int = 60000,
nn_eval_block_size: int = 8,
dcd_block_size: int = 4,
snr_thres: int = -100.0,
noise_frame_num_used_for_snr: int = 100,
decibel_thres: int = -100.0,
speech_noise_thres: float = 0.6,
fe_prior_thres: float = 1e-4,
silence_pdf_num: int = 1,
sil_pdf_ids: List[int] = [0],
speech_noise_thresh_low: float = -0.1,
speech_noise_thresh_high: float = 0.3,
output_frame_probs: bool = False,
frame_in_ms: int = 10,
frame_length_ms: int = 25,
**kwargs,
):
self.sample_rate = sample_rate
self.detect_mode = detect_mode
self.snr_mode = snr_mode
self.max_end_silence_time = max_end_silence_time
self.max_start_silence_time = max_start_silence_time
self.do_start_point_detection = do_start_point_detection
self.do_end_point_detection = do_end_point_detection
self.window_size_ms = window_size_ms
self.sil_to_speech_time_thres = sil_to_speech_time_thres
self.speech_to_sil_time_thres = speech_to_sil_time_thres
self.speech_2_noise_ratio = speech_2_noise_ratio
self.do_extend = do_extend
self.lookback_time_start_point = lookback_time_start_point
self.lookahead_time_end_point = lookahead_time_end_point
self.max_single_segment_time = max_single_segment_time
self.nn_eval_block_size = nn_eval_block_size
self.dcd_block_size = dcd_block_size
self.snr_thres = snr_thres
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
self.decibel_thres = decibel_thres
self.speech_noise_thres = speech_noise_thres
self.fe_prior_thres = fe_prior_thres
self.silence_pdf_num = silence_pdf_num
self.sil_pdf_ids = sil_pdf_ids
self.speech_noise_thresh_low = speech_noise_thresh_low
self.speech_noise_thresh_high = speech_noise_thresh_high
self.output_frame_probs = output_frame_probs
self.frame_in_ms = frame_in_ms
self.frame_length_ms = frame_length_ms
class E2EVadSpeechBufWithDoa(object):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
def Reset(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
class E2EVadFrameProb(object):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(self):
self.noise_prob = 0.0
self.speech_prob = 0.0
self.score = 0.0
self.frame_id = 0
self.frm_state = 0
class WindowDetector(object):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(
self,
window_size_ms: int,
sil_to_speech_time: int,
speech_to_sil_time: int,
frame_size_ms: int,
):
self.window_size_ms = window_size_ms
self.sil_to_speech_time = sil_to_speech_time
self.speech_to_sil_time = speech_to_sil_time
self.frame_size_ms = frame_size_ms
self.win_size_frame = int(window_size_ms / frame_size_ms)
self.win_sum = 0
self.win_state = [0] * self.win_size_frame # 初始化窗
self.cur_win_pos = 0
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def Reset(self) -> None:
self.cur_win_pos = 0
self.win_sum = 0
self.win_state = [0] * self.win_size_frame
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def GetWinSize(self) -> int:
return int(self.win_size_frame)
def DetectOneFrame(
self, frameState: FrameState, frame_count: int, cache: dict = {}
) -> AudioChangeState:
cur_frame_state = FrameState.kFrameStateSil
if frameState == FrameState.kFrameStateSpeech:
cur_frame_state = 1
elif frameState == FrameState.kFrameStateSil:
cur_frame_state = 0
else:
return AudioChangeState.kChangeStateInvalid
self.win_sum -= self.win_state[self.cur_win_pos]
self.win_sum += cur_frame_state
self.win_state[self.cur_win_pos] = cur_frame_state
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
if (
self.pre_frame_state == FrameState.kFrameStateSil
and self.win_sum >= self.sil_to_speech_frmcnt_thres
):
self.pre_frame_state = FrameState.kFrameStateSpeech
return AudioChangeState.kChangeStateSil2Speech
if (
self.pre_frame_state == FrameState.kFrameStateSpeech
and self.win_sum <= self.speech_to_sil_frmcnt_thres
):
self.pre_frame_state = FrameState.kFrameStateSil
return AudioChangeState.kChangeStateSpeech2Sil
if self.pre_frame_state == FrameState.kFrameStateSil:
return AudioChangeState.kChangeStateSil2Sil
if self.pre_frame_state == FrameState.kFrameStateSpeech:
return AudioChangeState.kChangeStateSpeech2Speech
return AudioChangeState.kChangeStateInvalid
def FrameSizeMs(self) -> int:
return int(self.frame_size_ms)
class Stats(object):
def __init__(
self,
sil_pdf_ids,
max_end_sil_frame_cnt_thresh,
speech_noise_thres,
):
self.data_buf_start_frame = 0
self.frm_cnt = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.continous_silence_frame_count = 0
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.number_end_time_detected = 0
self.sil_frame = 0
self.sil_pdf_ids = sil_pdf_ids
self.noise_average_decibel = -100.0
self.pre_end_silence_detected = False
self.next_seg = True
self.output_data_buf = []
self.output_data_buf_offset = 0
self.frame_probs = []
self.max_end_sil_frame_cnt_thresh = max_end_sil_frame_cnt_thresh
self.speech_noise_thres = speech_noise_thres
self.scores = None
self.max_time_out = False
self.decibel = []
self.data_buf = None
self.data_buf_all = None
self.waveform = None
self.last_drop_frames = 0
@tables.register("model_classes", "FsmnVADStreaming")
class FsmnVADStreaming(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(
self,
encoder: str = None,
encoder_conf: Optional[Dict] = None,
vad_post_args: Dict[str, Any] = None,
**kwargs,
):
super().__init__()
self.vad_opts = VADXOptions(**kwargs)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(**encoder_conf)
self.encoder = encoder
def ResetDetection(self, cache: dict = {}):
cache["stats"].continous_silence_frame_count = 0
cache["stats"].latest_confirmed_speech_frame = 0
cache["stats"].lastest_confirmed_silence_frame = -1
cache["stats"].confirmed_start_frame = -1
cache["stats"].confirmed_end_frame = -1
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateStartPointNotDetected
)
cache["windows_detector"].Reset()
cache["stats"].sil_frame = 0
cache["stats"].frame_probs = []
if cache["stats"].output_data_buf:
assert cache["stats"].output_data_buf[-1].contain_seg_end_point == True
drop_frames = int(
cache["stats"].output_data_buf[-1].end_ms / self.vad_opts.frame_in_ms
)
real_drop_frames = drop_frames - cache["stats"].last_drop_frames
cache["stats"].last_drop_frames = drop_frames
cache["stats"].data_buf_all = cache["stats"].data_buf_all[
real_drop_frames
* int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000) :
]
cache["stats"].decibel = cache["stats"].decibel[real_drop_frames:]
cache["stats"].scores = cache["stats"].scores[:, real_drop_frames:, :]
def ComputeDecibel(self, cache: dict = {}) -> None:
frame_sample_length = int(
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
)
frame_shift_length = int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
)
if cache["stats"].data_buf_all is None:
cache["stats"].data_buf_all = cache["stats"].waveform[
0
] # cache["stats"].data_buf is pointed to cache["stats"].waveform[0]
cache["stats"].data_buf = cache["stats"].data_buf_all
else:
cache["stats"].data_buf_all = torch.cat(
(cache["stats"].data_buf_all, cache["stats"].waveform[0])
)
for offset in range(
0,
cache["stats"].waveform.shape[1] - frame_sample_length + 1,
frame_shift_length,
):
cache["stats"].decibel.append(
10
* math.log10(
(cache["stats"].waveform[0][offset : offset + frame_sample_length])
.square()
.sum()
+ 0.000001
)
)
def ComputeScores(self, feats: torch.Tensor, cache: dict = {}) -> None:
scores = self.encoder(feats, cache=cache["encoder"]).to(
"cpu"
) # return B * T * D
assert (
scores.shape[1] == feats.shape[1]
), "The shape between feats and scores does not match"
self.vad_opts.nn_eval_block_size = scores.shape[1]
cache["stats"].frm_cnt += scores.shape[1] # count total frames
if cache["stats"].scores is None:
cache["stats"].scores = scores # the first calculation
else:
cache["stats"].scores = torch.cat((cache["stats"].scores, scores), dim=1)
def PopDataBufTillFrame(
self, frame_idx: int, cache: dict = {}
) -> None: # need check again
while cache["stats"].data_buf_start_frame < frame_idx:
if len(cache["stats"].data_buf) >= int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
):
cache["stats"].data_buf_start_frame += 1
cache["stats"].data_buf = cache["stats"].data_buf_all[
(
cache["stats"].data_buf_start_frame
- cache["stats"].last_drop_frames
)
* int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
) :
]
def PopDataToOutputBuf(
self,
start_frm: int,
frm_cnt: int,
first_frm_is_start_point: bool,
last_frm_is_end_point: bool,
end_point_is_sent_end: bool,
cache: dict = {},
) -> None:
self.PopDataBufTillFrame(start_frm, cache=cache)
expected_sample_number = int(
frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
)
if last_frm_is_end_point:
extra_sample = max(
0,
int(
self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000
- self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000
),
)
expected_sample_number += int(extra_sample)
if end_point_is_sent_end:
expected_sample_number = max(
expected_sample_number, len(cache["stats"].data_buf)
)
if len(cache["stats"].data_buf) < expected_sample_number:
print("error in calling pop data_buf\n")
if len(cache["stats"].output_data_buf) == 0 or first_frm_is_start_point:
cache["stats"].output_data_buf.append(E2EVadSpeechBufWithDoa())
cache["stats"].output_data_buf[-1].Reset()
cache["stats"].output_data_buf[-1].start_ms = (
start_frm * self.vad_opts.frame_in_ms
)
cache["stats"].output_data_buf[-1].end_ms = (
cache["stats"].output_data_buf[-1].start_ms
)
cache["stats"].output_data_buf[-1].doa = 0
cur_seg = cache["stats"].output_data_buf[-1]
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
print("warning\n")
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
data_to_pop = 0
if end_point_is_sent_end:
data_to_pop = expected_sample_number
else:
data_to_pop = int(
frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000
)
if data_to_pop > len(cache["stats"].data_buf):
print('VAD data_to_pop is bigger than cache["stats"].data_buf.size()!!!\n')
data_to_pop = len(cache["stats"].data_buf)
expected_sample_number = len(cache["stats"].data_buf)
cur_seg.doa = 0
for sample_cpy_out in range(0, data_to_pop):
# cur_seg.buffer[out_pos ++] = data_buf_.back();
out_pos += 1
for sample_cpy_out in range(data_to_pop, expected_sample_number):
# cur_seg.buffer[out_pos++] = data_buf_.back()
out_pos += 1
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
print("Something wrong with the VAD algorithm\n")
cache["stats"].data_buf_start_frame += frm_cnt
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
if first_frm_is_start_point:
cur_seg.contain_seg_start_point = True
if last_frm_is_end_point:
cur_seg.contain_seg_end_point = True
def OnSilenceDetected(self, valid_frame: int, cache: dict = {}):
cache["stats"].lastest_confirmed_silence_frame = valid_frame
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
self.PopDataBufTillFrame(valid_frame, cache=cache)
# silence_detected_callback_
# pass
def OnVoiceDetected(self, valid_frame: int, cache: dict = {}) -> None:
cache["stats"].latest_confirmed_speech_frame = valid_frame
self.PopDataToOutputBuf(valid_frame, 1, False, False, False, cache=cache)
def OnVoiceStart(
self, start_frame: int, fake_result: bool = False, cache: dict = {}
) -> None:
if self.vad_opts.do_start_point_detection:
pass
if cache["stats"].confirmed_start_frame != -1:
print("not reset vad properly\n")
else:
cache["stats"].confirmed_start_frame = start_frame
if (
not fake_result
and cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
self.PopDataToOutputBuf(
cache["stats"].confirmed_start_frame, 1, True, False, False, cache=cache
)
def OnVoiceEnd(
self, end_frame: int, fake_result: bool, is_last_frame: bool, cache: dict = {}
) -> None:
for t in range(cache["stats"].latest_confirmed_speech_frame + 1, end_frame):
self.OnVoiceDetected(t, cache=cache)
if self.vad_opts.do_end_point_detection:
pass
if cache["stats"].confirmed_end_frame != -1:
print("not reset vad properly\n")
else:
cache["stats"].confirmed_end_frame = end_frame
if not fake_result:
cache["stats"].sil_frame = 0
self.PopDataToOutputBuf(
cache["stats"].confirmed_end_frame,
1,
False,
True,
is_last_frame,
cache=cache,
)
cache["stats"].number_end_time_detected += 1
def MaybeOnVoiceEndIfLastFrame(
self, is_final_frame: bool, cur_frm_idx: int, cache: dict = {}
) -> None:
if is_final_frame:
self.OnVoiceEnd(cur_frm_idx, False, True, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
def GetLatency(self, cache: dict = {}) -> int:
return int(
self.LatencyFrmNumAtStartPoint(cache=cache) * self.vad_opts.frame_in_ms
)
def LatencyFrmNumAtStartPoint(self, cache: dict = {}) -> int:
vad_latency = cache["windows_detector"].GetWinSize()
if self.vad_opts.do_extend:
vad_latency += int(
self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms
)
return vad_latency
def GetFrameState(self, t: int, cache: dict = {}):
frame_state = FrameState.kFrameStateInvalid
cur_decibel = cache["stats"].decibel[t]
cur_snr = cur_decibel - cache["stats"].noise_average_decibel
# for each frame, calc log posterior probability of each state
if cur_decibel < self.vad_opts.decibel_thres:
frame_state = FrameState.kFrameStateSil
self.DetectOneFrame(frame_state, t, False, cache=cache)
return frame_state
sum_score = 0.0
noise_prob = 0.0
assert len(cache["stats"].sil_pdf_ids) == self.vad_opts.silence_pdf_num
if len(cache["stats"].sil_pdf_ids) > 0:
assert len(cache["stats"].scores) == 1 # 只支持batch_size = 1的测试
sil_pdf_scores = [
cache["stats"].scores[0][t][sil_pdf_id]
for sil_pdf_id in cache["stats"].sil_pdf_ids
]
sum_score = sum(sil_pdf_scores)
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
total_score = 1.0
sum_score = total_score - sum_score
speech_prob = math.log(sum_score)
if self.vad_opts.output_frame_probs:
frame_prob = E2EVadFrameProb()
frame_prob.noise_prob = noise_prob
frame_prob.speech_prob = speech_prob
frame_prob.score = sum_score
frame_prob.frame_id = t
cache["stats"].frame_probs.append(frame_prob)
if (
math.exp(speech_prob)
>= math.exp(noise_prob) + cache["stats"].speech_noise_thres
):
if (
cur_snr >= self.vad_opts.snr_thres
and cur_decibel >= self.vad_opts.decibel_thres
):
frame_state = FrameState.kFrameStateSpeech
else:
frame_state = FrameState.kFrameStateSil
else:
frame_state = FrameState.kFrameStateSil
if cache["stats"].noise_average_decibel < -99.9:
cache["stats"].noise_average_decibel = cur_decibel
else:
cache["stats"].noise_average_decibel = (
cur_decibel
+ cache["stats"].noise_average_decibel
* (self.vad_opts.noise_frame_num_used_for_snr - 1)
) / self.vad_opts.noise_frame_num_used_for_snr
return frame_state
def forward(
self,
feats: torch.Tensor,
waveform: torch.tensor,
cache: dict = {},
is_final: bool = False,
**kwargs,
):
# if len(cache) == 0:
# self.AllResetDetection()
# self.waveform = waveform # compute decibel for each frame
cache["stats"].waveform = waveform
is_streaming_input = kwargs.get("is_streaming_input", True)
self.ComputeDecibel(cache=cache)
self.ComputeScores(feats, cache=cache)
if not is_final:
self.DetectCommonFrames(cache=cache)
else:
self.DetectLastFrames(cache=cache)
segments = []
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
segment_batch = []
if len(cache["stats"].output_data_buf) > 0:
for i in range(
cache["stats"].output_data_buf_offset,
len(cache["stats"].output_data_buf),
):
if (
is_streaming_input
): # in this case, return [beg, -1], [], [-1, end], [beg, end]
if (
not cache["stats"]
.output_data_buf[i]
.contain_seg_start_point
):
continue
if (
not cache["stats"].next_seg
and not cache["stats"]
.output_data_buf[i]
.contain_seg_end_point
):
continue
start_ms = (
cache["stats"].output_data_buf[i].start_ms
if cache["stats"].next_seg
else -1
)
if cache["stats"].output_data_buf[i].contain_seg_end_point:
end_ms = cache["stats"].output_data_buf[i].end_ms
cache["stats"].next_seg = True
cache["stats"].output_data_buf_offset += 1
else:
end_ms = -1
cache["stats"].next_seg = False
segment = [start_ms, end_ms]
else: # in this case, return [beg, end]
if not is_final and (
not cache["stats"]
.output_data_buf[i]
.contain_seg_start_point
or not cache["stats"]
.output_data_buf[i]
.contain_seg_end_point
):
continue
segment = [
cache["stats"].output_data_buf[i].start_ms,
cache["stats"].output_data_buf[i].end_ms,
]
cache[
"stats"
].output_data_buf_offset += 1 # need update this parameter
segment_batch.append(segment)
if segment_batch:
segments.append(segment_batch)
# if is_final:
# # reset class variables and clear the dict for the next query
# self.AllResetDetection()
return segments
def init_cache(self, cache: dict = {}, **kwargs):
cache["frontend"] = {}
cache["prev_samples"] = torch.empty(0)
cache["encoder"] = {}
windows_detector = WindowDetector(
self.vad_opts.window_size_ms,
self.vad_opts.sil_to_speech_time_thres,
self.vad_opts.speech_to_sil_time_thres,
self.vad_opts.frame_in_ms,
)
windows_detector.Reset()
stats = Stats(
sil_pdf_ids=self.vad_opts.sil_pdf_ids,
max_end_sil_frame_cnt_thresh=self.vad_opts.max_end_silence_time
- self.vad_opts.speech_to_sil_time_thres,
speech_noise_thres=self.vad_opts.speech_noise_thres,
)
cache["windows_detector"] = windows_detector
cache["stats"] = stats
return cache
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
cache: dict = {},
**kwargs,
):
if len(cache) == 0:
self.init_cache(cache, **kwargs)
meta_data = {}
chunk_size = kwargs.get("chunk_size", 60000) # 50ms
chunk_stride_samples = int(chunk_size * frontend.fs / 1000)
time1 = time.perf_counter()
is_streaming_input = (
kwargs.get("is_streaming_input", False)
if chunk_size >= 15000
else kwargs.get("is_streaming_input", True)
)
is_final = (
kwargs.get("is_final", False)
if is_streaming_input
else kwargs.get("is_final", True)
)
cfg = {"is_final": is_final, "is_streaming_input": is_streaming_input}
audio_sample_list = load_audio_text_image_video(
data_in,
fs=frontend.fs,
audio_fs=kwargs.get("fs", 16000),
data_type=kwargs.get("data_type", "sound"),
tokenizer=tokenizer,
cache=cfg,
)
_is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True
is_streaming_input = cfg["is_streaming_input"]
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
assert len(audio_sample_list) == 1, "batch_size must be set 1"
audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0]))
n = int(len(audio_sample) // chunk_stride_samples + int(_is_final))
m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final)))
segments = []
for i in range(n):
kwargs["is_final"] = _is_final and i == n - 1
audio_sample_i = audio_sample[
i * chunk_stride_samples : (i + 1) * chunk_stride_samples
]
# extract fbank feats
speech, speech_lengths = extract_fbank(
[audio_sample_i],
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
cache=cache["frontend"],
is_final=kwargs["is_final"],
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item()
* frontend.frame_shift
* frontend.lfr_n
/ 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
batch = {
"feats": speech,
"waveform": cache["frontend"]["waveforms"],
"is_final": kwargs["is_final"],
"cache": cache,
"is_streaming_input": is_streaming_input,
}
segments_i = self.forward(**batch)
if len(segments_i) > 0:
segments.extend(*segments_i)
cache["prev_samples"] = audio_sample[:-m]
if _is_final:
self.init_cache(cache)
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{1}best_recog"]
results = []
result_i = {"key": key[0], "value": segments}
if (
"MODELSCOPE_ENVIRONMENT" in os.environ
and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas"
):
result_i = json.dumps(result_i)
results.append(result_i)
if ibest_writer is not None:
ibest_writer["text"][key[0]] = segments
return results, meta_data
def DetectCommonFrames(self, cache: dict = {}) -> int:
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateEndPointDetected
):
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.GetFrameState(
cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames,
cache=cache,
)
self.DetectOneFrame(
frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache
)
return 0
def DetectLastFrames(self, cache: dict = {}) -> int:
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateEndPointDetected
):
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.GetFrameState(
cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames,
cache=cache,
)
if i != 0:
self.DetectOneFrame(
frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache
)
else:
self.DetectOneFrame(
frame_state, cache["stats"].frm_cnt - 1, True, cache=cache
)
return 0
def DetectOneFrame(
self,
cur_frm_state: FrameState,
cur_frm_idx: int,
is_final_frame: bool,
cache: dict = {},
) -> None:
tmp_cur_frm_state = FrameState.kFrameStateInvalid
if cur_frm_state == FrameState.kFrameStateSpeech:
if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
tmp_cur_frm_state = FrameState.kFrameStateSpeech
else:
tmp_cur_frm_state = FrameState.kFrameStateSil
elif cur_frm_state == FrameState.kFrameStateSil:
tmp_cur_frm_state = FrameState.kFrameStateSil
state_change = cache["windows_detector"].DetectOneFrame(
tmp_cur_frm_state, cur_frm_idx, cache=cache
)
frm_shift_in_ms = self.vad_opts.frame_in_ms
if AudioChangeState.kChangeStateSil2Speech == state_change:
silence_frame_count = cache["stats"].continous_silence_frame_count
cache["stats"].continous_silence_frame_count = 0
cache["stats"].pre_end_silence_detected = False
start_frame = 0
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
start_frame = max(
cache["stats"].data_buf_start_frame,
cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache),
)
self.OnVoiceStart(start_frame, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateInSpeechSegment
)
for t in range(start_frame + 1, cur_frm_idx + 1):
self.OnVoiceDetected(t, cache=cache)
elif (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
for t in range(
cache["stats"].latest_confirmed_speech_frame + 1, cur_frm_idx
):
self.OnVoiceDetected(t, cache=cache)
if (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
cache["stats"].continous_silence_frame_count = 0
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
pass
elif (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
if (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
cache["stats"].continous_silence_frame_count = 0
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
if (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
cache["stats"].max_time_out = True
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
elif AudioChangeState.kChangeStateSil2Sil == state_change:
cache["stats"].continous_silence_frame_count += 1
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateStartPointNotDetected
):
# silence timeout, return zero length decision
if (
(
self.vad_opts.detect_mode
== VadDetectMode.kVadSingleUtteranceDetectMode.value
)
and (
cache["stats"].continous_silence_frame_count * frm_shift_in_ms
> self.vad_opts.max_start_silence_time
)
) or (is_final_frame and cache["stats"].number_end_time_detected == 0):
for t in range(
cache["stats"].lastest_confirmed_silence_frame + 1, cur_frm_idx
):
self.OnSilenceDetected(t, cache=cache)
self.OnVoiceStart(0, True, cache=cache)
self.OnVoiceEnd(0, True, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
else:
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint(cache=cache):
self.OnSilenceDetected(
cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache),
cache=cache,
)
elif (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateInSpeechSegment
):
if (
cache["stats"].continous_silence_frame_count * frm_shift_in_ms
>= cache["stats"].max_end_sil_frame_cnt_thresh
):
lookback_frame = int(
cache["stats"].max_end_sil_frame_cnt_thresh / frm_shift_in_ms
)
if self.vad_opts.do_extend:
lookback_frame -= int(
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
)
lookback_frame -= 1
lookback_frame = max(0, lookback_frame)
self.OnVoiceEnd(
cur_frm_idx - lookback_frame, False, False, cache=cache
)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif (
cur_frm_idx - cache["stats"].confirmed_start_frame + 1
> self.vad_opts.max_single_segment_time / frm_shift_in_ms
):
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
cache["stats"].vad_state_machine = (
VadStateMachine.kVadInStateEndPointDetected
)
elif self.vad_opts.do_extend and not is_final_frame:
if cache["stats"].continous_silence_frame_count <= int(
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms
):
self.OnVoiceDetected(cur_frm_idx, cache=cache)
else:
self.MaybeOnVoiceEndIfLastFrame(
is_final_frame, cur_frm_idx, cache=cache
)
else:
pass
if (
cache["stats"].vad_state_machine
== VadStateMachine.kVadInStateEndPointDetected
and self.vad_opts.detect_mode
== VadDetectMode.kVadMutipleUtteranceDetectMode.value
):
self.ResetDetection(cache=cache)
|