Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import math | |
from typing import List, Tuple | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from funasr_detach.models.data2vec import utils | |
from funasr_detach.models.data2vec.multihead_attention import MultiheadAttention | |
class ConvFeatureExtractionModel(nn.Module): | |
def __init__( | |
self, | |
conv_layers: List[Tuple[int, int, int]], | |
dropout: float = 0.0, | |
mode: str = "default", | |
conv_bias: bool = False, | |
in_d: int = 1, | |
): | |
super().__init__() | |
assert mode in {"default", "layer_norm"} | |
def block( | |
n_in, | |
n_out, | |
k, | |
stride, | |
is_layer_norm=False, | |
is_group_norm=False, | |
conv_bias=False, | |
): | |
def make_conv(): | |
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) | |
nn.init.kaiming_normal_(conv.weight) | |
return conv | |
assert ( | |
is_layer_norm and is_group_norm | |
) == False, "layer norm and group norm are exclusive" | |
if is_layer_norm: | |
return nn.Sequential( | |
make_conv(), | |
nn.Dropout(p=dropout), | |
nn.Sequential( | |
utils.TransposeLast(), | |
utils.Fp32LayerNorm(dim, elementwise_affine=True), | |
utils.TransposeLast(), | |
), | |
nn.GELU(), | |
) | |
elif is_group_norm: | |
return nn.Sequential( | |
make_conv(), | |
nn.Dropout(p=dropout), | |
utils.Fp32GroupNorm(dim, dim, affine=True), | |
nn.GELU(), | |
) | |
else: | |
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) | |
self.conv_layers = nn.ModuleList() | |
for i, cl in enumerate(conv_layers): | |
assert len(cl) == 3, "invalid conv definition: " + str(cl) | |
(dim, k, stride) = cl | |
self.conv_layers.append( | |
block( | |
in_d, | |
dim, | |
k, | |
stride, | |
is_layer_norm=mode == "layer_norm", | |
is_group_norm=mode == "default" and i == 0, | |
conv_bias=conv_bias, | |
) | |
) | |
in_d = dim | |
def forward(self, x): | |
if len(x.shape) == 2: | |
x = x.unsqueeze(1) | |
else: | |
x = x.transpose(1, 2) | |
for conv in self.conv_layers: | |
x = conv(x) | |
return x | |
def make_conv_pos(e, k, g): | |
pos_conv = nn.Conv1d( | |
e, | |
e, | |
kernel_size=k, | |
padding=k // 2, | |
groups=g, | |
) | |
dropout = 0 | |
std = math.sqrt((4 * (1.0 - dropout)) / (k * e)) | |
nn.init.normal_(pos_conv.weight, mean=0, std=std) | |
nn.init.constant_(pos_conv.bias, 0) | |
pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2) | |
pos_conv = nn.Sequential(pos_conv, utils.SamePad(k), nn.GELU()) | |
return pos_conv | |
class TransformerEncoder(nn.Module): | |
def build_encoder_layer(self): | |
if self.layer_type == "transformer": | |
layer = TransformerSentenceEncoderLayer( | |
embedding_dim=self.embedding_dim, | |
ffn_embedding_dim=self.encoder_ffn_embed_dim, | |
num_attention_heads=self.encoder_attention_heads, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
activation_dropout=self.activation_dropout, | |
activation_fn=self.activation_fn, | |
layer_norm_first=self.layer_norm_first, | |
) | |
else: | |
logging.error("Only transformer is supported for data2vec now") | |
return layer | |
def __init__( | |
self, | |
# position | |
dropout, | |
encoder_embed_dim, | |
required_seq_len_multiple, | |
pos_conv_depth, | |
conv_pos, | |
conv_pos_groups, | |
# transformer layers | |
layer_type, | |
encoder_layers, | |
encoder_ffn_embed_dim, | |
encoder_attention_heads, | |
attention_dropout, | |
activation_dropout, | |
activation_fn, | |
layer_norm_first, | |
encoder_layerdrop, | |
max_positions, | |
): | |
super().__init__() | |
# position | |
self.dropout = dropout | |
self.embedding_dim = encoder_embed_dim | |
self.required_seq_len_multiple = required_seq_len_multiple | |
if pos_conv_depth > 1: | |
num_layers = pos_conv_depth | |
k = max(3, conv_pos // num_layers) | |
def make_conv_block(e, k, g, l): | |
return nn.Sequential( | |
*[ | |
nn.Sequential( | |
nn.Conv1d( | |
e, | |
e, | |
kernel_size=k, | |
padding=k // 2, | |
groups=g, | |
), | |
utils.SamePad(k), | |
utils.TransposeLast(), | |
torch.nn.LayerNorm(e, elementwise_affine=False), | |
utils.TransposeLast(), | |
nn.GELU(), | |
) | |
for _ in range(l) | |
] | |
) | |
self.pos_conv = make_conv_block( | |
self.embedding_dim, k, conv_pos_groups, num_layers | |
) | |
else: | |
self.pos_conv = make_conv_pos( | |
self.embedding_dim, | |
conv_pos, | |
conv_pos_groups, | |
) | |
# transformer layers | |
self.layer_type = layer_type | |
self.encoder_ffn_embed_dim = encoder_ffn_embed_dim | |
self.encoder_attention_heads = encoder_attention_heads | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_fn = activation_fn | |
self.layer_norm_first = layer_norm_first | |
self.layerdrop = encoder_layerdrop | |
self.max_positions = max_positions | |
self.layers = nn.ModuleList( | |
[self.build_encoder_layer() for _ in range(encoder_layers)] | |
) | |
self.layer_norm = torch.nn.LayerNorm(self.embedding_dim) | |
self.apply(utils.init_bert_params) | |
def forward(self, x, padding_mask=None, layer=None): | |
x, layer_results = self.extract_features(x, padding_mask, layer) | |
if self.layer_norm_first and layer is None: | |
x = self.layer_norm(x) | |
return x, layer_results | |
def extract_features( | |
self, | |
x, | |
padding_mask=None, | |
tgt_layer=None, | |
min_layer=0, | |
): | |
if padding_mask is not None: | |
x[padding_mask] = 0 | |
x_conv = self.pos_conv(x.transpose(1, 2)) | |
x_conv = x_conv.transpose(1, 2) | |
x = x + x_conv | |
if not self.layer_norm_first: | |
x = self.layer_norm(x) | |
# pad to the sequence length dimension | |
x, pad_length = utils.pad_to_multiple( | |
x, self.required_seq_len_multiple, dim=-2, value=0 | |
) | |
if pad_length > 0 and padding_mask is None: | |
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) | |
padding_mask[:, -pad_length:] = True | |
else: | |
padding_mask, _ = utils.pad_to_multiple( | |
padding_mask, self.required_seq_len_multiple, dim=-1, value=True | |
) | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
layer_results = [] | |
r = None | |
for i, layer in enumerate(self.layers): | |
dropout_probability = np.random.random() if self.layerdrop > 0 else 1 | |
if not self.training or (dropout_probability > self.layerdrop): | |
x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask) | |
if i >= min_layer: | |
layer_results.append((x, z, lr)) | |
if i == tgt_layer: | |
r = x | |
break | |
if r is not None: | |
x = r | |
# T x B x C -> B x T x C | |
x = x.transpose(0, 1) | |
# undo paddding | |
if pad_length > 0: | |
x = x[:, :-pad_length] | |
def undo_pad(a, b, c): | |
return ( | |
a[:-pad_length], | |
b[:-pad_length] if b is not None else b, | |
c[:-pad_length], | |
) | |
layer_results = [undo_pad(*u) for u in layer_results] | |
return x, layer_results | |
def max_positions(self): | |
"""Maximum output length supported by the encoder.""" | |
return self.max_positions | |
def upgrade_state_dict_named(self, state_dict, name): | |
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
return state_dict | |
class TransformerSentenceEncoderLayer(nn.Module): | |
""" | |
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained | |
models. | |
""" | |
def __init__( | |
self, | |
embedding_dim: int = 768, | |
ffn_embedding_dim: int = 3072, | |
num_attention_heads: int = 8, | |
dropout: float = 0.1, | |
attention_dropout: float = 0.1, | |
activation_dropout: float = 0.1, | |
activation_fn: str = "relu", | |
layer_norm_first: bool = False, | |
) -> None: | |
super().__init__() | |
# Initialize parameters | |
self.embedding_dim = embedding_dim | |
self.dropout = dropout | |
self.activation_dropout = activation_dropout | |
# Initialize blocks | |
self.activation_fn = utils.get_activation_fn(activation_fn) | |
self.self_attn = MultiheadAttention( | |
self.embedding_dim, | |
num_attention_heads, | |
dropout=attention_dropout, | |
self_attention=True, | |
) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(self.activation_dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.layer_norm_first = layer_norm_first | |
# layer norm associated with the self attention layer | |
self.self_attn_layer_norm = torch.nn.LayerNorm(self.embedding_dim) | |
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) | |
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) | |
# layer norm associated with the position wise feed-forward NN | |
self.final_layer_norm = torch.nn.LayerNorm(self.embedding_dim) | |
def forward( | |
self, | |
x: torch.Tensor, # (T, B, C) | |
self_attn_mask: torch.Tensor = None, | |
self_attn_padding_mask: torch.Tensor = None, | |
): | |
""" | |
LayerNorm is applied either before or after the self-attention/ffn | |
modules similar to the original Transformer imlementation. | |
""" | |
residual = x | |
if self.layer_norm_first: | |
x = self.self_attn_layer_norm(x) | |
x, attn = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=self_attn_padding_mask, | |
attn_mask=self_attn_mask, | |
need_weights=False, | |
) | |
x = self.dropout1(x) | |
x = residual + x | |
residual = x | |
x = self.final_layer_norm(x) | |
x = self.activation_fn(self.fc1(x)) | |
x = self.dropout2(x) | |
x = self.fc2(x) | |
layer_result = x | |
x = self.dropout3(x) | |
x = residual + x | |
else: | |
x, attn = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=self_attn_padding_mask, | |
need_weights=False, | |
) | |
x = self.dropout1(x) | |
x = residual + x | |
x = self.self_attn_layer_norm(x) | |
residual = x | |
x = self.activation_fn(self.fc1(x)) | |
x = self.dropout2(x) | |
x = self.fc2(x) | |
layer_result = x | |
x = self.dropout3(x) | |
x = residual + x | |
x = self.final_layer_norm(x) | |
return x, (attn, layer_result) | |