File size: 12,529 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import math
from typing import List, Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from funasr_detach.models.data2vec import utils
from funasr_detach.models.data2vec.multihead_attention import MultiheadAttention


class ConvFeatureExtractionModel(nn.Module):
    def __init__(
        self,
        conv_layers: List[Tuple[int, int, int]],
        dropout: float = 0.0,
        mode: str = "default",
        conv_bias: bool = False,
        in_d: int = 1,
    ):
        super().__init__()

        assert mode in {"default", "layer_norm"}

        def block(
            n_in,
            n_out,
            k,
            stride,
            is_layer_norm=False,
            is_group_norm=False,
            conv_bias=False,
        ):
            def make_conv():
                conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
                nn.init.kaiming_normal_(conv.weight)
                return conv

            assert (
                is_layer_norm and is_group_norm
            ) == False, "layer norm and group norm are exclusive"

            if is_layer_norm:
                return nn.Sequential(
                    make_conv(),
                    nn.Dropout(p=dropout),
                    nn.Sequential(
                        utils.TransposeLast(),
                        utils.Fp32LayerNorm(dim, elementwise_affine=True),
                        utils.TransposeLast(),
                    ),
                    nn.GELU(),
                )
            elif is_group_norm:
                return nn.Sequential(
                    make_conv(),
                    nn.Dropout(p=dropout),
                    utils.Fp32GroupNorm(dim, dim, affine=True),
                    nn.GELU(),
                )
            else:
                return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())

        self.conv_layers = nn.ModuleList()
        for i, cl in enumerate(conv_layers):
            assert len(cl) == 3, "invalid conv definition: " + str(cl)
            (dim, k, stride) = cl

            self.conv_layers.append(
                block(
                    in_d,
                    dim,
                    k,
                    stride,
                    is_layer_norm=mode == "layer_norm",
                    is_group_norm=mode == "default" and i == 0,
                    conv_bias=conv_bias,
                )
            )
            in_d = dim

    def forward(self, x):
        if len(x.shape) == 2:
            x = x.unsqueeze(1)
        else:
            x = x.transpose(1, 2)

        for conv in self.conv_layers:
            x = conv(x)
        return x


def make_conv_pos(e, k, g):
    pos_conv = nn.Conv1d(
        e,
        e,
        kernel_size=k,
        padding=k // 2,
        groups=g,
    )
    dropout = 0
    std = math.sqrt((4 * (1.0 - dropout)) / (k * e))
    nn.init.normal_(pos_conv.weight, mean=0, std=std)
    nn.init.constant_(pos_conv.bias, 0)

    pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2)
    pos_conv = nn.Sequential(pos_conv, utils.SamePad(k), nn.GELU())

    return pos_conv


class TransformerEncoder(nn.Module):
    def build_encoder_layer(self):
        if self.layer_type == "transformer":
            layer = TransformerSentenceEncoderLayer(
                embedding_dim=self.embedding_dim,
                ffn_embedding_dim=self.encoder_ffn_embed_dim,
                num_attention_heads=self.encoder_attention_heads,
                dropout=self.dropout,
                attention_dropout=self.attention_dropout,
                activation_dropout=self.activation_dropout,
                activation_fn=self.activation_fn,
                layer_norm_first=self.layer_norm_first,
            )
        else:
            logging.error("Only transformer is supported for data2vec now")
        return layer

    def __init__(
        self,
        # position
        dropout,
        encoder_embed_dim,
        required_seq_len_multiple,
        pos_conv_depth,
        conv_pos,
        conv_pos_groups,
        # transformer layers
        layer_type,
        encoder_layers,
        encoder_ffn_embed_dim,
        encoder_attention_heads,
        attention_dropout,
        activation_dropout,
        activation_fn,
        layer_norm_first,
        encoder_layerdrop,
        max_positions,
    ):
        super().__init__()

        # position
        self.dropout = dropout
        self.embedding_dim = encoder_embed_dim
        self.required_seq_len_multiple = required_seq_len_multiple
        if pos_conv_depth > 1:
            num_layers = pos_conv_depth
            k = max(3, conv_pos // num_layers)

            def make_conv_block(e, k, g, l):
                return nn.Sequential(
                    *[
                        nn.Sequential(
                            nn.Conv1d(
                                e,
                                e,
                                kernel_size=k,
                                padding=k // 2,
                                groups=g,
                            ),
                            utils.SamePad(k),
                            utils.TransposeLast(),
                            torch.nn.LayerNorm(e, elementwise_affine=False),
                            utils.TransposeLast(),
                            nn.GELU(),
                        )
                        for _ in range(l)
                    ]
                )

            self.pos_conv = make_conv_block(
                self.embedding_dim, k, conv_pos_groups, num_layers
            )

        else:
            self.pos_conv = make_conv_pos(
                self.embedding_dim,
                conv_pos,
                conv_pos_groups,
            )

        # transformer layers
        self.layer_type = layer_type
        self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_fn = activation_fn
        self.layer_norm_first = layer_norm_first
        self.layerdrop = encoder_layerdrop
        self.max_positions = max_positions
        self.layers = nn.ModuleList(
            [self.build_encoder_layer() for _ in range(encoder_layers)]
        )
        self.layer_norm = torch.nn.LayerNorm(self.embedding_dim)

        self.apply(utils.init_bert_params)

    def forward(self, x, padding_mask=None, layer=None):
        x, layer_results = self.extract_features(x, padding_mask, layer)

        if self.layer_norm_first and layer is None:
            x = self.layer_norm(x)

        return x, layer_results

    def extract_features(
        self,
        x,
        padding_mask=None,
        tgt_layer=None,
        min_layer=0,
    ):

        if padding_mask is not None:
            x[padding_mask] = 0

        x_conv = self.pos_conv(x.transpose(1, 2))
        x_conv = x_conv.transpose(1, 2)
        x = x + x_conv

        if not self.layer_norm_first:
            x = self.layer_norm(x)

        # pad to the sequence length dimension
        x, pad_length = utils.pad_to_multiple(
            x, self.required_seq_len_multiple, dim=-2, value=0
        )
        if pad_length > 0 and padding_mask is None:
            padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
            padding_mask[:, -pad_length:] = True
        else:
            padding_mask, _ = utils.pad_to_multiple(
                padding_mask, self.required_seq_len_multiple, dim=-1, value=True
            )
        x = F.dropout(x, p=self.dropout, training=self.training)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        layer_results = []
        r = None
        for i, layer in enumerate(self.layers):
            dropout_probability = np.random.random() if self.layerdrop > 0 else 1
            if not self.training or (dropout_probability > self.layerdrop):
                x, (z, lr) = layer(x, self_attn_padding_mask=padding_mask)
                if i >= min_layer:
                    layer_results.append((x, z, lr))
            if i == tgt_layer:
                r = x
                break

        if r is not None:
            x = r

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        # undo paddding
        if pad_length > 0:
            x = x[:, :-pad_length]

            def undo_pad(a, b, c):
                return (
                    a[:-pad_length],
                    b[:-pad_length] if b is not None else b,
                    c[:-pad_length],
                )

            layer_results = [undo_pad(*u) for u in layer_results]

        return x, layer_results

    def max_positions(self):
        """Maximum output length supported by the encoder."""
        return self.max_positions

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        return state_dict


class TransformerSentenceEncoderLayer(nn.Module):
    """
    Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
    models.
    """

    def __init__(
        self,
        embedding_dim: int = 768,
        ffn_embedding_dim: int = 3072,
        num_attention_heads: int = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        activation_fn: str = "relu",
        layer_norm_first: bool = False,
    ) -> None:

        super().__init__()
        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.dropout = dropout
        self.activation_dropout = activation_dropout

        # Initialize blocks
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.self_attn = MultiheadAttention(
            self.embedding_dim,
            num_attention_heads,
            dropout=attention_dropout,
            self_attention=True,
        )

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(self.activation_dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.layer_norm_first = layer_norm_first

        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = torch.nn.LayerNorm(self.embedding_dim)
        self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)

        # layer norm associated with the position wise feed-forward NN
        self.final_layer_norm = torch.nn.LayerNorm(self.embedding_dim)

    def forward(
        self,
        x: torch.Tensor,  # (T, B, C)
        self_attn_mask: torch.Tensor = None,
        self_attn_padding_mask: torch.Tensor = None,
    ):
        """
        LayerNorm is applied either before or after the self-attention/ffn
        modules similar to the original Transformer imlementation.
        """
        residual = x

        if self.layer_norm_first:
            x = self.self_attn_layer_norm(x)
            x, attn = self.self_attn(
                query=x,
                key=x,
                value=x,
                key_padding_mask=self_attn_padding_mask,
                attn_mask=self_attn_mask,
                need_weights=False,
            )
            x = self.dropout1(x)
            x = residual + x

            residual = x
            x = self.final_layer_norm(x)
            x = self.activation_fn(self.fc1(x))
            x = self.dropout2(x)
            x = self.fc2(x)

            layer_result = x

            x = self.dropout3(x)
            x = residual + x
        else:
            x, attn = self.self_attn(
                query=x,
                key=x,
                value=x,
                key_padding_mask=self_attn_padding_mask,
                need_weights=False,
            )

            x = self.dropout1(x)
            x = residual + x

            x = self.self_attn_layer_norm(x)

            residual = x
            x = self.activation_fn(self.fc1(x))
            x = self.dropout2(x)
            x = self.fc2(x)

            layer_result = x

            x = self.dropout3(x)
            x = residual + x
            x = self.final_layer_norm(x)

        return x, (attn, layer_result)