Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import torch | |
import numpy as np | |
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from funasr_detach.register import tables | |
from funasr_detach.train_utils.device_funcs import to_device | |
from funasr_detach.models.ct_transformer.model import CTTransformer | |
from funasr_detach.utils.load_utils import load_audio_text_image_video | |
from funasr_detach.models.ct_transformer.utils import ( | |
split_to_mini_sentence, | |
split_words, | |
) | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class CTTransformerStreaming(CTTransformer): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection | |
https://arxiv.org/pdf/2003.01309.pdf | |
""" | |
def __init__( | |
self, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
def punc_forward( | |
self, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
vad_indexes: torch.Tensor, | |
**kwargs, | |
): | |
"""Compute loss value from buffer sequences. | |
Args: | |
input (torch.Tensor): Input ids. (batch, len) | |
hidden (torch.Tensor): Target ids. (batch, len) | |
""" | |
x = self.embed(text) | |
# mask = self._target_mask(input) | |
h, _, _ = self.encoder(x, text_lengths, vad_indexes=vad_indexes) | |
y = self.decoder(h) | |
return y, None | |
def with_vad(self): | |
return True | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
cache: dict = {}, | |
**kwargs, | |
): | |
assert len(data_in) == 1 | |
if len(cache) == 0: | |
cache["pre_text"] = [] | |
text = load_audio_text_image_video( | |
data_in, data_type=kwargs.get("kwargs", "text") | |
)[0] | |
text = "".join(cache["pre_text"]) + " " + text | |
split_size = kwargs.get("split_size", 20) | |
tokens = split_words(text) | |
tokens_int = tokenizer.encode(tokens) | |
mini_sentences = split_to_mini_sentence(tokens, split_size) | |
mini_sentences_id = split_to_mini_sentence(tokens_int, split_size) | |
assert len(mini_sentences) == len(mini_sentences_id) | |
cache_sent = [] | |
cache_sent_id = torch.from_numpy(np.array([], dtype="int32")) | |
skip_num = 0 | |
sentence_punc_list = [] | |
sentence_words_list = [] | |
cache_pop_trigger_limit = 200 | |
results = [] | |
meta_data = {} | |
punc_array = None | |
for mini_sentence_i in range(len(mini_sentences)): | |
mini_sentence = mini_sentences[mini_sentence_i] | |
mini_sentence_id = mini_sentences_id[mini_sentence_i] | |
mini_sentence = cache_sent + mini_sentence | |
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0) | |
data = { | |
"text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0), | |
"text_lengths": torch.from_numpy( | |
np.array([len(mini_sentence_id)], dtype="int32") | |
), | |
"vad_indexes": torch.from_numpy( | |
np.array([len(cache["pre_text"])], dtype="int32") | |
), | |
} | |
data = to_device(data, kwargs["device"]) | |
# y, _ = self.wrapped_model(**data) | |
y, _ = self.punc_forward(**data) | |
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1) | |
punctuations = indices | |
if indices.size()[0] != 1: | |
punctuations = torch.squeeze(indices) | |
assert punctuations.size()[0] == len(mini_sentence) | |
# Search for the last Period/QuestionMark as cache | |
if mini_sentence_i < len(mini_sentences) - 1: | |
sentenceEnd = -1 | |
last_comma_index = -1 | |
for i in range(len(punctuations) - 2, 1, -1): | |
if ( | |
self.punc_list[punctuations[i]] == "。" | |
or self.punc_list[punctuations[i]] == "?" | |
): | |
sentenceEnd = i | |
break | |
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": | |
last_comma_index = i | |
if ( | |
sentenceEnd < 0 | |
and len(mini_sentence) > cache_pop_trigger_limit | |
and last_comma_index >= 0 | |
): | |
# The sentence it too long, cut off at a comma. | |
sentenceEnd = last_comma_index | |
punctuations[sentenceEnd] = self.sentence_end_id | |
cache_sent = mini_sentence[sentenceEnd + 1 :] | |
cache_sent_id = mini_sentence_id[sentenceEnd + 1 :] | |
mini_sentence = mini_sentence[0 : sentenceEnd + 1] | |
punctuations = punctuations[0 : sentenceEnd + 1] | |
# if len(punctuations) == 0: | |
# continue | |
punctuations_np = punctuations.cpu().numpy() | |
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np] | |
sentence_words_list += mini_sentence | |
assert len(sentence_punc_list) == len(sentence_words_list) | |
words_with_punc = [] | |
sentence_punc_list_out = [] | |
for i in range(0, len(sentence_words_list)): | |
if i > 0: | |
if ( | |
len(sentence_words_list[i][0].encode()) == 1 | |
and len(sentence_words_list[i - 1][-1].encode()) == 1 | |
): | |
sentence_words_list[i] = " " + sentence_words_list[i] | |
if skip_num < len(cache["pre_text"]): | |
skip_num += 1 | |
else: | |
words_with_punc.append(sentence_words_list[i]) | |
if skip_num >= len(cache["pre_text"]): | |
sentence_punc_list_out.append(sentence_punc_list[i]) | |
if sentence_punc_list[i] != "_": | |
words_with_punc.append(sentence_punc_list[i]) | |
sentence_out = "".join(words_with_punc) | |
sentenceEnd = -1 | |
for i in range(len(sentence_punc_list) - 2, 1, -1): | |
if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?": | |
sentenceEnd = i | |
break | |
cache["pre_text"] = sentence_words_list[sentenceEnd + 1 :] | |
if sentence_out[-1] in self.punc_list: | |
sentence_out = sentence_out[:-1] | |
sentence_punc_list_out[-1] = "_" | |
# keep a punctuations array for punc segment | |
if punc_array is None: | |
punc_array = punctuations | |
else: | |
punc_array = torch.cat([punc_array, punctuations], dim=0) | |
result_i = {"key": key[0], "text": sentence_out, "punc_array": punc_array} | |
results.append(result_i) | |
return results, meta_data | |