File size: 7,363 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import torch
import numpy as np
from contextlib import contextmanager
from distutils.version import LooseVersion

from funasr_detach.register import tables
from funasr_detach.train_utils.device_funcs import to_device
from funasr_detach.models.ct_transformer.model import CTTransformer
from funasr_detach.utils.load_utils import load_audio_text_image_video
from funasr_detach.models.ct_transformer.utils import (
    split_to_mini_sentence,
    split_words,
)


if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


@tables.register("model_classes", "CTTransformerStreaming")
class CTTransformerStreaming(CTTransformer):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
    https://arxiv.org/pdf/2003.01309.pdf
    """

    def __init__(
        self,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)

    def punc_forward(
        self,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        vad_indexes: torch.Tensor,
        **kwargs,
    ):
        """Compute loss value from buffer sequences.

        Args:
            input (torch.Tensor): Input ids. (batch, len)
            hidden (torch.Tensor): Target ids. (batch, len)

        """
        x = self.embed(text)
        # mask = self._target_mask(input)
        h, _, _ = self.encoder(x, text_lengths, vad_indexes=vad_indexes)
        y = self.decoder(h)
        return y, None

    def with_vad(self):
        return True

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        cache: dict = {},
        **kwargs,
    ):
        assert len(data_in) == 1

        if len(cache) == 0:
            cache["pre_text"] = []
        text = load_audio_text_image_video(
            data_in, data_type=kwargs.get("kwargs", "text")
        )[0]
        text = "".join(cache["pre_text"]) + " " + text

        split_size = kwargs.get("split_size", 20)

        tokens = split_words(text)
        tokens_int = tokenizer.encode(tokens)

        mini_sentences = split_to_mini_sentence(tokens, split_size)
        mini_sentences_id = split_to_mini_sentence(tokens_int, split_size)
        assert len(mini_sentences) == len(mini_sentences_id)
        cache_sent = []
        cache_sent_id = torch.from_numpy(np.array([], dtype="int32"))
        skip_num = 0
        sentence_punc_list = []
        sentence_words_list = []
        cache_pop_trigger_limit = 200
        results = []
        meta_data = {}
        punc_array = None
        for mini_sentence_i in range(len(mini_sentences)):
            mini_sentence = mini_sentences[mini_sentence_i]
            mini_sentence_id = mini_sentences_id[mini_sentence_i]
            mini_sentence = cache_sent + mini_sentence
            mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
            data = {
                "text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
                "text_lengths": torch.from_numpy(
                    np.array([len(mini_sentence_id)], dtype="int32")
                ),
                "vad_indexes": torch.from_numpy(
                    np.array([len(cache["pre_text"])], dtype="int32")
                ),
            }
            data = to_device(data, kwargs["device"])
            # y, _ = self.wrapped_model(**data)
            y, _ = self.punc_forward(**data)
            _, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
            punctuations = indices
            if indices.size()[0] != 1:
                punctuations = torch.squeeze(indices)
            assert punctuations.size()[0] == len(mini_sentence)

            # Search for the last Period/QuestionMark as cache
            if mini_sentence_i < len(mini_sentences) - 1:
                sentenceEnd = -1
                last_comma_index = -1
                for i in range(len(punctuations) - 2, 1, -1):
                    if (
                        self.punc_list[punctuations[i]] == "。"
                        or self.punc_list[punctuations[i]] == "?"
                    ):
                        sentenceEnd = i
                        break
                    if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
                        last_comma_index = i

                if (
                    sentenceEnd < 0
                    and len(mini_sentence) > cache_pop_trigger_limit
                    and last_comma_index >= 0
                ):
                    # The sentence it too long, cut off at a comma.
                    sentenceEnd = last_comma_index
                    punctuations[sentenceEnd] = self.sentence_end_id
                cache_sent = mini_sentence[sentenceEnd + 1 :]
                cache_sent_id = mini_sentence_id[sentenceEnd + 1 :]
                mini_sentence = mini_sentence[0 : sentenceEnd + 1]
                punctuations = punctuations[0 : sentenceEnd + 1]

            # if len(punctuations) == 0:
            #    continue

            punctuations_np = punctuations.cpu().numpy()
            sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
            sentence_words_list += mini_sentence

        assert len(sentence_punc_list) == len(sentence_words_list)
        words_with_punc = []
        sentence_punc_list_out = []
        for i in range(0, len(sentence_words_list)):
            if i > 0:
                if (
                    len(sentence_words_list[i][0].encode()) == 1
                    and len(sentence_words_list[i - 1][-1].encode()) == 1
                ):
                    sentence_words_list[i] = " " + sentence_words_list[i]
            if skip_num < len(cache["pre_text"]):
                skip_num += 1
            else:
                words_with_punc.append(sentence_words_list[i])
            if skip_num >= len(cache["pre_text"]):
                sentence_punc_list_out.append(sentence_punc_list[i])
                if sentence_punc_list[i] != "_":
                    words_with_punc.append(sentence_punc_list[i])
        sentence_out = "".join(words_with_punc)

        sentenceEnd = -1
        for i in range(len(sentence_punc_list) - 2, 1, -1):
            if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?":
                sentenceEnd = i
                break
        cache["pre_text"] = sentence_words_list[sentenceEnd + 1 :]
        if sentence_out[-1] in self.punc_list:
            sentence_out = sentence_out[:-1]
            sentence_punc_list_out[-1] = "_"
        # keep a punctuations array for punc segment
        if punc_array is None:
            punc_array = punctuations
        else:
            punc_array = torch.cat([punc_array, punctuations], dim=0)

        result_i = {"key": key[0], "text": sentence_out, "punc_array": punc_array}
        results.append(result_i)

        return results, meta_data