File size: 2,358 Bytes
fe6f0ef
 
eeaa8d0
4b555a1
eeaa8d0
fe6f0ef
8d8e13c
5e00ad7
d5e2227
fe6f0ef
 
 
 
 
 
d5e2227
fe6f0ef
d5e2227
 
 
fe6f0ef
 
5e00ad7
 
fe6f0ef
5e00ad7
 
52994fc
fe6f0ef
ad7849a
b8fb8cf
ad7849a
0e4d3e5
ad7849a
b8fb8cf
fe6f0ef
 
5e00ad7
fe6f0ef
5e00ad7
 
fe6f0ef
5e00ad7
4b555a1
 
b8fb8cf
fe6f0ef
4b555a1
0e4d3e5
5aab43b
0e4d3e5
 
fe6f0ef
 
 
5e00ad7
0e4d3e5
 
5e00ad7
87f72b7
fe6f0ef
 
f973db1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
import tensorflow as tf
from huggingface_hub import from_pretrained_keras
from tensorflow.keras import mixed_precision

# Load your trained models
#model1 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")
#model2 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")
model1 = from_pretrained_keras("ml-debi/EfficientNetV2S-Food101")

with open('classes.txt', 'r') as f:
    classes = [line.strip() for line in f]

# Add information about the models
model1_info = """
### Model Information

Welcome to my Hugging Face space, where gastronomy meets technology! This space is dedicated to an image classifier that has been trained on the Food101 dataset. 
At the core of this classifier lies the EfficientNetV2S base model, which has been fine-tuned to enhance its ability to identify a broad spectrum of food items with great accuracy.
While it may not be perfect, it’s a nice tool for culinary exploration. Enjoy your journey through the world of food! 🍽️
"""

#model2_info = """
#### Model 2 Information

#This model is based on the EfficientNetB0 architecture and was trained on augmented data, providing improved generalization.
#"""
examples = [["./examples/club_sandwich.jpg"], ["./examples/edamame.jpg"], ["./examples/eggs_benedict.jpg"]]

def preprocess(image):
    print("before resize", image.shape)
    image = tf.image.resize(image, [224, 224])
    
    image = tf.expand_dims(image, axis=0)
    print("After expanddims", image.shape)
    return image

def predict(image):
    # Choose the model based on the dropdown selection
    #print("---model_selection---", model_selection) #
    #model = model1 if model_selection == "EfficentNetB0 Fine Tune" else model2

    #print(model.summary())
    if mixed_precision.global_policy() == "mixed_float16":
        mixed_precision.set_global_policy(policy="float32")

    image = preprocess(image)
    print(mixed_precision.global_policy())
    prediction = model1.predict(image)[0]
    print("model prediction", prediction)
    confidences = {model1.config['id2label'][str(i)]: float(prediction[i]) for i in range(101)}
    return confidences

iface = gr.Interface(
    fn=predict,
    inputs=[gr.Image()],
    outputs=[gr.Label(num_top_classes=5)],
    title="Food Vision Mini Project",
    description=f"{model1_info}\n",
    examples=examples
)

iface.launch()